1

The diagram shows three sets of equally-spaced parallel lines.
Given that $\overrightarrow{A C}=\mathbf{p}$ and that $\overrightarrow{A D}=\mathbf{q}$, express the following vectors in terms of \mathbf{p} and \mathbf{q}.
a $\overrightarrow{C A}$
b $\overrightarrow{A G}$
c $\overrightarrow{A B}$
d $\overrightarrow{D F}$
e $\overrightarrow{H E}$
f $\overrightarrow{A F}$
g $\overrightarrow{A H}$
h $\overrightarrow{D C}$
i $\overrightarrow{C G}$
j $\overrightarrow{I A}$
k $\overrightarrow{E C}$
$1 \overrightarrow{I B}$

2

In the quadrilateral shown, $\overrightarrow{O A}=\mathbf{u}, \overrightarrow{A B}=\mathbf{v}$ and $\overrightarrow{O C}=\mathbf{w}$.
Find expressions in terms of \mathbf{u}, \mathbf{v} and \mathbf{w} for
a $\overrightarrow{O B}$
b $\overrightarrow{A C}$
c $\overrightarrow{C B}$

The diagram shows a cuboid.
Given that $\overrightarrow{A B}=\mathbf{p}, \overrightarrow{A D}=\mathbf{q}$ and $\overrightarrow{A E}=\mathbf{r}$, find expressions in terms of \mathbf{p}, \mathbf{q} and \mathbf{r} for
a $\overrightarrow{B C}$
b $\overrightarrow{A F}$
c $\overrightarrow{D E}$
d $\overrightarrow{A G}$
e $\overrightarrow{G B}$
f $\overrightarrow{B H}$

The diagram shows parallelogram ORST.
Given that $\overrightarrow{O R}=\mathbf{a}+2 \mathbf{b}$ and that $\overrightarrow{O T}=\mathbf{a}-2 \mathbf{b}$,
a find expressions in terms of \mathbf{a} and \mathbf{b} for
i $\overrightarrow{O S}$
ii $\overrightarrow{T R}$

Given also that $\overrightarrow{O A}=\mathbf{a}$ and that $\overrightarrow{O B}=\mathbf{b}$,
b copy the diagram and show the positions of the points A and B.

C4 Vectors

5

The diagram shows triangle $O A B$ in which $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
The points C and D are the mid-points of $O A$ and $A B$ respectively.
a Find and simplify expressions in terms of \mathbf{a} and \mathbf{b} for
i $\overrightarrow{O C}$
ii $\overrightarrow{A B}$
iii $\overrightarrow{A D}$
iv $\overrightarrow{O D}$
v $\overrightarrow{C D}$
b Explain what your expression for $\overrightarrow{C D}$ tells you about $\overrightarrow{O B}$ and $\overrightarrow{C D}$.
6 Given that vectors \mathbf{p} and \mathbf{q} are not parallel, state whether or not each of the following pairs of vectors are parallel.
a $2 \mathbf{p}$ and $3 \mathbf{p}$
b $(\mathbf{p}+2 \mathbf{q})$ and $(2 \mathbf{p}-4 \mathbf{q})$
c $(3 \mathbf{p}-\mathbf{q})$ and $\left(\mathbf{p}-\frac{1}{3} \mathbf{q}\right)$
d $(\mathbf{p}-2 \mathbf{q})$ and $(4 \mathbf{q}-2 \mathbf{p})$
e $\left(\frac{3}{4} \mathbf{p}+\mathbf{q}\right)$ and $(6 \mathbf{p}+8 \mathbf{q}) \quad \mathbf{f}(2 \mathbf{q}-3 \mathbf{p})$ and $\left(\frac{3}{2} \mathbf{q}-\mathbf{p}\right)$

7 The points O, A, B and C are such that $\overrightarrow{O A}=4 \mathbf{m}, \overrightarrow{O B}=4 \mathbf{m}+2 \mathbf{n}$ and $\overrightarrow{O C}=2 \mathbf{m}+3 \mathbf{n}$, where \mathbf{m} and \mathbf{n} are non-parallel vectors.
a Find an expression for $\overrightarrow{B C}$ in terms of \mathbf{m} and \mathbf{n}.
The point M is the mid-point of $O C$.
b Show that $A M$ is parallel to $B C$.
8 The points O, A, B and C are such that $\overrightarrow{O A}=6 \mathbf{u}-4 \mathbf{v}, \overrightarrow{O B}=3 \mathbf{u}-\mathbf{v}$ and $\overrightarrow{O C}=\mathbf{v}-3 \mathbf{u}$, where \mathbf{u} and \mathbf{v} are non-parallel vectors.
The point M is the mid-point of $O A$ and the point N is the point on $A B$ such that $A N: N B=1: 2$
a Find $\overrightarrow{O M}$ and $\overrightarrow{O N}$.
b Prove that C, M and N are collinear.
9 Given that vectors \mathbf{p} and \mathbf{q} are not parallel, find the values of the constants a and b such that
a $a \mathbf{p}+3 \mathbf{q}=5 \mathbf{p}+b \mathbf{q}$
b $(2 \mathbf{p}+a \mathbf{q})+(b \mathbf{p}-4 \mathbf{q})=\mathbf{0}$
c $4 a \mathbf{q}-\mathbf{p}=b \mathbf{p}-2 \mathbf{q}$
d $(2 a \mathbf{p}+b \mathbf{q})-(a \mathbf{q}-6 \mathbf{p})=\mathbf{0}$

10

The diagram shows triangle $O A B$ in which $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
The point C is the mid-point of $O A$ and the point D is the mid-point of $B C$.
a Find an expression for $\overrightarrow{O D}$ in terms of \mathbf{a} and \mathbf{b}.
b Show that if the point E lies on $A B$ then $\overrightarrow{O E}$ can be written in the form $\mathbf{a}+k(\mathbf{b}-\mathbf{a})$, where k is a constant.
Given also that $O D$ produced meets $A B$ at E,
c find $\overrightarrow{O E}$,
d show that $A E: E B=2: 1$

