C4

1 Sketch each line on a separate diagram given its vector equation.
a $\quad \mathbf{r}=2 \mathbf{i}+s \mathbf{j}$
b $\mathbf{r}=s(\mathbf{i}+\mathbf{j})$
c $\mathbf{r}=\mathbf{i}+4 \mathbf{j}+s(\mathbf{i}+2 \mathbf{j})$
d $\mathbf{r}=3 \mathbf{j}+s(3 \mathbf{i}-\mathbf{j})$
e $\mathbf{r}=-4 \mathbf{i}+2 \mathbf{j}+s(2 \mathbf{i}-\mathbf{j})$
f $\mathbf{r}=(2 s+1) \mathbf{i}+(3 s-2) \mathbf{j}$

2 Write down a vector equation of the straight line
a parallel to the vector $(3 \mathbf{i}-2 \mathbf{j})$ which passes through the point with position vector $(-\mathbf{i}+\mathbf{j})$,
b parallel to the x-axis which passes through the point with coordinates $(0,4)$,
c parallel to the line $\mathbf{r}=2 \mathbf{i}+t(\mathbf{i}+5 \mathbf{j})$ which passes through the point with coordinates $(3,-1)$.
3 Find a vector equation of the straight line which passes through the points with position vectors
a $\binom{1}{0}$ and $\binom{3}{1}$
b $\binom{-3}{4}$ and $\binom{-1}{1}$
c $\binom{2}{-2}$ and $\binom{-2}{3}$

4 Find the value of the constant c such that line with vector equation $\mathbf{r}=3 \mathbf{i}-\mathbf{j}+\lambda(c \mathbf{i}+2 \mathbf{j})$
a passes through the point $(0,5)$,
b is parallel to the line $\mathbf{r}=-2 \mathbf{i}+4 \mathbf{j}+\mu(6 \mathbf{i}+3 \mathbf{j})$.
5 Find a vector equation for each line given its cartesian equation.
a $x=-1$
b $y=2 x$
c $y=3 x+1$
d $y=\frac{3}{4} x-2$
e $y=5-\frac{1}{2} x$
f $x-4 y+8=0$

6 A line has the vector equation $\mathbf{r}=2 \mathbf{i}+\mathbf{j}+\lambda(3 \mathbf{i}+2 \mathbf{j})$.
a Write down parametric equations for the line.
b Hence find the cartesian equation of the line in the form $a x+b y+c=0$, where a, b and c are integers.

7 Find a cartesian equation for each line in the form $a x+b y+c=0$, where a, b and c are integers.
a $\mathbf{r}=3 \mathbf{i}+\lambda(\mathbf{i}+2 \mathbf{j})$
b $\mathbf{r}=\mathbf{i}+4 \mathbf{j}+\lambda(3 \mathbf{i}+\mathbf{j})$
c $\mathbf{r}=2 \mathbf{j}+\lambda(4 \mathbf{i}-\mathbf{j})$
d $\mathbf{r}=-2 \mathbf{i}+\mathbf{j}+\lambda(5 \mathbf{i}+2 \mathbf{j})$
e $\mathbf{r}=2 \mathbf{i}-3 \mathbf{j}+\lambda(-3 \mathbf{i}+4 \mathbf{j})$
f $\mathbf{r}=(\lambda+3) \mathbf{i}+(-2 \lambda-1) \mathbf{j}$

8 For each pair of lines, determine with reasons whether they are identical, parallel but not identical or not parallel.
a $\quad \mathbf{r}=\binom{1}{2}+s\binom{3}{-1}$
b $\mathbf{r}=\binom{-1}{2}+s\binom{1}{4}$
c $\mathbf{r}=\binom{2}{-5}+s\binom{2}{4}$
$\mathbf{r}=\binom{-2}{3}+t\binom{-6}{2}$
$\mathbf{r}=\binom{-2}{4}+t\binom{4}{1}$
$\mathbf{r}=\binom{-1}{1}+t\binom{3}{6}$

9 Find the position vector of the point of intersection of each pair of lines.
a $\mathbf{r}=\mathbf{i}+2 \mathbf{j}+\lambda \mathbf{i}$
$\mathbf{r}=2 \mathbf{i}+\mathbf{j}+\mu(3 \mathbf{i}+\mathbf{j})$
b $\mathbf{r}=4 \mathbf{i}+\mathbf{j}+\lambda(-\mathbf{i}+\mathbf{j})$
$\mathbf{r}=5 \mathbf{i}-2 \mathbf{j}+\mu(2 \mathbf{i}-3 \mathbf{j})$
c $\mathbf{r}=\mathbf{j}+\lambda(2 \mathbf{i}-\mathbf{j})$
$\mathbf{r}=2 \mathbf{i}+10 \mathbf{j}+\mu(-\mathbf{i}+3 \mathbf{j})$
d $\mathbf{r}=-\mathbf{i}+5 \mathbf{j}+\lambda(-4 \mathbf{i}+6 \mathbf{j})$
$\mathbf{r}=2 \mathbf{i}-2 \mathbf{j}+\mu(-\mathbf{i}+2 \mathbf{j})$
e $\mathbf{r}=-2 \mathbf{i}+11 \mathbf{j}+\lambda(-3 \mathbf{i}+4 \mathbf{j})$
f $\mathbf{r}=\mathbf{i}+2 \mathbf{j}+\lambda(3 \mathbf{i}+2 \mathbf{j})$
$\mathbf{r}=-3 \mathbf{i}-7 \mathbf{j}+\mu(5 \mathbf{i}+3 \mathbf{j})$
$\mathbf{r}=3 \mathbf{i}+5 \mathbf{j}+\mu(\mathbf{i}+4 \mathbf{j})$

10 Write down a vector equation of the straight line
a parallel to the vector $(\mathbf{i}+3 \mathbf{j}-2 \mathbf{k})$ which passes through the point with position vector $(4 \mathbf{i}+\mathbf{k})$,
b perpendicular to the $x y$-plane which passes through the point with coordinates $(2,1,0)$,
c parallel to the line $\mathbf{r}=3 \mathbf{i}-\mathbf{j}+t(2 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k})$ which passes through the point with coordinates ($-1,4,2$).

11 The points A and B have position vectors ($5 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$) and ($6 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$) respectively.
a Find $\overrightarrow{A B}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
b Write down a vector equation of the straight line l which passes through A and B.
c Show that l passes through the point with coordinates $(3,9,-8)$.
12 Find a vector equation of the straight line which passes through the points with position vectors
a $(\mathbf{i}+3 \mathbf{j}+4 \mathbf{k})$ and $(5 \mathbf{i}+4 \mathbf{j}+6 \mathbf{k})$
b $(3 \mathbf{i}-2 \mathbf{k})$ and $(\mathbf{i}+5 \mathbf{j}+2 \mathbf{k})$
c $\mathbf{0}$ and $(6 \mathbf{i}-\mathbf{j}+2 \mathbf{k})$
d $(-\mathbf{i}-2 \mathbf{j}+3 \mathbf{k})$ and $(4 \mathbf{i}-7 \mathbf{j}+\mathbf{k})$

13 Find the value of the constants a and b such that line $\mathbf{r}=3 \mathbf{i}-5 \mathbf{j}+\mathbf{k}+\lambda(2 \mathbf{i}+a \mathbf{j}+b \mathbf{k})$ a passes through the point $(9,-2,-8)$,
b is parallel to the line $\mathbf{r}=4 \mathbf{j}-2 \mathbf{k}+\mu(8 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})$.
14 Find cartesian equations for each of the following lines.
a $\quad \mathbf{r}=\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 5 \\ 2\end{array}\right)$
b $\mathbf{r}=\left(\begin{array}{c}4 \\ -1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 6 \\ 3\end{array}\right)$
c $\mathbf{r}=\left(\begin{array}{c}-1 \\ 5 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}4 \\ -2 \\ -1\end{array}\right)$

15 Find a vector equation for each line given its cartesian equations.
a $\frac{x-1}{3}=\frac{y+4}{2}=z-5$
b $\frac{x}{4}=\frac{y-1}{-2}=\frac{z+7}{3}$
c $\frac{x+5}{-4}=y+3=z$

16 Show that the lines with vector equations $\mathbf{r}=4 \mathbf{i}+3 \mathbf{k}+s(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k})$ and $\mathbf{r}=7 \mathbf{i}+2 \mathbf{j}-5 \mathbf{k}+t(-3 \mathbf{i}+2 \mathbf{j}+\mathbf{k})$ intersect, and find the coordinates of their point of intersection.

17 Show that the lines with vector equations $\mathbf{r}=2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}+3 \mathbf{k})$ and $\mathbf{r}=\mathbf{i}+4 \mathbf{j}+3 \mathbf{k}+\mu(\mathbf{i}-2 \mathbf{j}+\mathbf{k})$ are skew.

18 For each pair of lines, find the position vector of their point of intersection or, if they do not intersect, state whether they are parallel or skew.
a $\mathbf{r}=\left(\begin{array}{l}3 \\ 1 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}4 \\ 1 \\ -1\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}3 \\ 2 \\ -4\end{array}\right)+\mu\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$
b $\mathbf{r}=\left(\begin{array}{l}0 \\ 3 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ -3\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}6 \\ -2 \\ -1\end{array}\right)+\mu\left(\begin{array}{c}-4 \\ 2 \\ 6\end{array}\right)$
c $\mathbf{r}=\left(\begin{array}{c}8 \\ 2 \\ -4\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}-2 \\ 2 \\ 8\end{array}\right)+\mu\left(\begin{array}{c}4 \\ -3 \\ -4\end{array}\right)$
d $\mathbf{r}=\left(\begin{array}{l}1 \\ 5 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 4 \\ -2\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}7 \\ -6 \\ -5\end{array}\right)+\mu\left(\begin{array}{c}2 \\ 1 \\ -3\end{array}\right)$
$\mathbf{e} \mathbf{r}=\left(\begin{array}{c}4 \\ -1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 5 \\ -3\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}3 \\ -2 \\ 1\end{array}\right)+\mu\left(\begin{array}{c}5 \\ -3 \\ -4\end{array}\right)$
f $\mathbf{r}=\left(\begin{array}{c}0 \\ 7 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}6 \\ -4 \\ 8\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}-12 \\ -1 \\ 11\end{array}\right)+\mu\left(\begin{array}{c}5 \\ 2 \\ -3\end{array}\right)$

