Exponentials

Exponentials

- 1 Find the value of x in each of the following.
 - a) $2^{3x-4} = 128$
 - b) $4^{2x+1} = 2^4$
 - c) $27^{4x} = 9^{6x}$

d)
$$\frac{2^{3x}}{4} = 8 \times 2^{5x-9}$$

2 a) Write 8×2^n as a power of 2.

b) Write
$$\frac{81}{3^{2n}}$$
 as a power of 3.

c) Simplify
$$\frac{2^{4x+2}}{2^{1-x}}$$
.

3 Given that
$$8^a 2^b = 1$$
 and $\frac{4^a}{2^{-b}} = 8$ find a and b.

4 In 1250 the population of England was 8 million. In the following years the Black Death struck and the population declined by 3% each year. Mathematicians have modeled the population by,

 $P_n = P_0(0.97)^n$ where *n* is years after 1250.

- a) Write down the value of P_0 .
- b) Use the model to find the population of England in 1270.

By 1300 the population had hit 4m and and started to grow steadily again by 4% per year.

- c) Write down a model to show the population growth of England from 1300 onwards.
- d) Hence, find the year in which England's population once again was 8 million.

5 A model for the number of bacteria in an experiment is given as,

 $P_n = 500 + ae^n$ where *n* is hours after the start.

The initial value of the bacteria is 700.

- a) Evaluate the value of *a*.
- b) Find the number of bacteria after 2 hours.
- c) Using a GDC find the number of bacteria after 10 hours.
- d) Use a GDC to find the the value of *n* when the bacteria first reaches 1 million.
- 6 Isotopes, once used in science experiments, are decreasing in their value exponentially such that the value they can be modeled by,

 $P_n = P_0 e^{-0.85t}$

where t is the time, in hours, since the experiment finished. The initial value of the isotope is known to be 12000.

- a) Find the value of the isotope after 5 hours.
- b) Use a graph to find the number of hours that will have passed

Logarithms and exponents test IB HL

Logarithms and Exponents

1 Non-calculator

Given that $A = \ln 5$ and $B = \ln 2$, express in terms of A and B,

- a) ln500 [2]
- b) $\log_{16}\sqrt{5}$ [3]

2 Non-calculator

Solve the following simultaneous equations,

$$2^{a}8^{b} = 128 \text{ and } \frac{4^{a}}{8^{4b}} = 32.$$
 [4]

3 Find the value of *x* correct to 2 decimal places.

a)
$$e^{\frac{1}{2}x-3} = 20.086$$
 [2]

b)
$$\ln(x+4) = 2.303$$
 [2]

A function is defined as $f(x) = \log_5(x-1) + 5$.

- a) Write down the domain and range of f(x). [2]
- b) Sketch a graph of f(x), showing all intercepts with the axis, and the asymptotes. [5]

€

£	<u>ال</u>		[2]
– €		a) $e_{1_{x-3}}^2 = 20.086$	F31
e		b) $m(x+4) = 20.086$	£≠∃ [2]
	4	b) $\ln(x + 4) = 2.303$ A function is defined as $f(x) = \log_5(x-1) + 5$.	[2]
		A function is defined as $f(x) = \log_{s}(x-1) + 5$. a) Write down the domain and range of $f(x)$.	[2]
	€	a) Write down the domain and range of $f(x)$. b) Sketch a graph of $f(x)$, showing all intercepts with the axis, and	[2]
€		b) Sketch a graphs of $f(x)$, showing all intercepts with the axis, and	[5]
		c) Find $f^{-}(x)$.	[<u>5]</u> [3]
	5	6) Find $f^{-1}(x)$: A radioactive substance is decaying such that the weight at time t day	[3]
	5	A radioactive substance is decaying such that the weight at time t day from when the radiation accurred is given by the function.	§
	€		
		$W_{i} \equiv 1000 \pm 2000 e^{-0.05i}$	[1]
€		a) Find the initial weight of the substance.	
€		b) Find the value of the weight as the time approaches infinity.	
		c) The weight after 10 days.	3

d) Find the number of days before the substances' weight is halved. $\begin{bmatrix} 3\\ 3 \end{bmatrix}$

Exponentials

Exponentials

1	a)	$x = \frac{11}{3}$
	b)	$x = \frac{1}{2}$
	c)	x any real number.
	d)	<i>x</i> = 2
2	a)	2^{3+n}
	b)	3^{4-2n}
	c)	2^{5x+1}
3	a = -	-3, <i>b</i> = 9
4	a)	8 million.
	b)	4.35 million.
	c)	$P_n = 4(1.04)^n$
	d)	1317
5	a)	<i>a</i> =200
5	a) b)	<i>a</i> =200 1978
5	a) b) c)	<i>a</i> =200 1978 4405793
5	a) b) c) d)	a=200 1978 4405793 n=8.5

- 6 a) 171.2
 - b) 0.82

Logarithms and Exponents

Logarithms and Exponents 1 a) 3A + 2B1 b) $\frac{A}{3A} + 2B$ 1 a) $\frac{3A}{8B} + 2B$ 2 b) $\frac{A}{3A} + 2B$ 2 b) $\frac{A}{2} + 2B$ 2 c) $\frac{A}{2} + 2B$ 2 c)

$$\stackrel{\text{(f)}}{=} 3 \stackrel{\text{(f)}}{=} a^{2} \stackrel{\text{(f)}}{=} a$$

$$\in 3 \in b^{a}$$
 $x^{\underline{x}} = \overline{6}^{12}$

$$eext{ 4 a}$$
 b) $D_{omain x>1}^{x=6}$

 4^{e} a) Representation x be any real number

$$\in$$
 b) $1000^{-1} = 5^{x+5} + 1$

5 a) 3000

€ b) 1000

- c) 2213
- $d) \quad 27th \text{ or } 20th day$
- d) 27th or 28th day d) 27.7 (27th day)