C4

1 Calculate
a $(\mathbf{i}+2 \mathbf{j}) .(3 \mathbf{i}+\mathbf{j})$
b $(4 \mathbf{i}-\mathbf{j}) \cdot(3 \mathbf{i}+5 \mathbf{j})$
c $(\mathbf{i}-2 \mathbf{j}) \cdot(-5 \mathbf{i}-2 \mathbf{j})$

2 Show that the vectors $(\mathbf{i}+4 \mathbf{j})$ and $(8 \mathbf{i}-2 \mathbf{j})$ are perpendicular.
3 Find in each case the value of the constant c for which the vectors \mathbf{u} and \mathbf{v} are perpendicular.
a $\quad \mathbf{u}=\binom{3}{-1}, \quad \mathbf{v}=\binom{c}{3}$
b $\mathbf{u}=\binom{2}{1}, \quad \mathbf{v}=\binom{3}{c}$
c $\mathbf{u}=\binom{2}{-5}, \quad \mathbf{v}=\binom{c}{-4}$

4 Find, in degrees to 1 decimal place, the angle between the vectors
a $(4 \mathbf{i}-3 \mathbf{j})$ and $(8 \mathbf{i}+6 \mathbf{j})$
b $(7 \mathbf{i}+\mathbf{j})$ and $(2 \mathbf{i}+6 \mathbf{j})$
c $(4 \mathbf{i}+2 \mathbf{j})$ and $(-5 \mathbf{i}+2 \mathbf{j})$

5 Relative to a fixed origin O, the points A, B and C have position vectors $(9 \mathbf{i}+\mathbf{j}),(3 \mathbf{i}-\mathbf{j})$ and $(5 \mathbf{i}-2 \mathbf{j})$ respectively. Show that $\angle A B C=45^{\circ}$.

6 Calculate
a $(\mathbf{i}+2 \mathbf{j}+4 \mathbf{k}) \cdot(3 \mathbf{i}+\mathbf{j}+2 \mathbf{k})$
b $(6 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}) .(\mathbf{i}-3 \mathbf{j}-\mathbf{k})$
c $(-5 \mathbf{i}+2 \mathbf{k}) .(\mathbf{i}+4 \mathbf{j}-3 \mathbf{k})$
d $(3 \mathbf{i}+2 \mathbf{j}-8 \mathbf{k}) \cdot(\mathbf{i}+11 \mathbf{j}-4 \mathbf{k})$
e $(3 \mathbf{i}-7 \mathbf{j}+\mathbf{k}) \cdot(9 \mathbf{i}+4 \mathbf{j}-\mathbf{k})$
f $(7 \mathbf{i}-3 \mathbf{j}) \cdot(-3 \mathbf{j}+6 \mathbf{k})$

7 Given that $\mathbf{p}=2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}, \mathbf{q}=\mathbf{i}+5 \mathbf{j}-\mathbf{k}$ and $\mathbf{r}=6 \mathbf{i}-2 \mathbf{j}-3 \mathbf{k}$,
a find the value of p.q,
b find the value of p.r,
c verify that $\mathbf{p} .(\mathbf{q}+\mathbf{r})=\mathbf{p} . \mathbf{q}+\mathbf{p} . \mathbf{r}$
8 Simplify
a $\mathbf{p} .(\mathbf{q}+\mathbf{r})+\mathbf{p} .(\mathbf{q}-\mathbf{r})$
b $\mathbf{p} \cdot(\mathbf{q}+\mathbf{r})+\mathbf{q} \cdot(\mathbf{r}-\mathbf{p})$

9 Show that the vectors ($5 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$) and ($3 \mathbf{i}+\mathbf{j}-6 \mathbf{k}$) are perpendicular.
10 Relative to a fixed origin O, the points A, B and C have position vectors ($3 \mathbf{i}+4 \mathbf{j}-6 \mathbf{k}$), $(\mathbf{i}+5 \mathbf{j}-2 \mathbf{k})$ and $(8 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k})$ respectively. Show that $\angle A B C=90^{\circ}$.

11 Find in each case the value or values of the constant c for which the vectors \mathbf{u} and \mathbf{v} are perpendicular.
a $\mathbf{u}=(2 \mathbf{i}+3 \mathbf{j}+\mathbf{k})$,
$\mathbf{v}=(c \mathbf{i}-3 \mathbf{j}+\mathbf{k})$
b $\mathbf{u}=(-5 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k})$,
$\mathbf{v}=(c \mathbf{i}-\mathbf{j}+3 c \mathbf{k})$
c $\mathbf{u}=(c \mathbf{i}-2 \mathbf{j}+8 \mathbf{k})$,
$\mathbf{v}=(c \mathbf{i}+c \mathbf{j}-3 \mathbf{k})$
d $\mathbf{u}=(3 c \mathbf{i}+2 \mathbf{j}+c \mathbf{k}), \quad \mathbf{v}=(5 \mathbf{i}-4 \mathbf{j}+2 c \mathbf{k})$

12 Find the exact value of the cosine of the angle between the vectors
a $\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right)$ and $\left(\begin{array}{c}8 \\ 1 \\ -4\end{array}\right)$
b $\left(\begin{array}{c}4 \\ 1 \\ -2\end{array}\right)$ and $\left(\begin{array}{c}-2 \\ 3 \\ -6\end{array}\right)$
c $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ and $\left(\begin{array}{c}1 \\ -7 \\ 2\end{array}\right)$
d $\left(\begin{array}{c}5 \\ -3 \\ 4\end{array}\right)$ and $\left(\begin{array}{c}3 \\ -4 \\ -1\end{array}\right)$

13 Find, in degrees to 1 decimal place, the angle between the vectors
a $(3 \mathbf{i}-4 \mathbf{k})$ and $(7 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k})$
b $(2 \mathbf{i}-6 \mathbf{j}+3 \mathbf{k})$ and $(\mathbf{i}-3 \mathbf{j}-\mathbf{k})$
c $(6 \mathbf{i}-2 \mathbf{j}-9 \mathbf{k})$ and $(3 \mathbf{i}+\mathbf{j}+4 \mathbf{k})$
d $(\mathbf{i}+5 \mathbf{j}-3 \mathbf{k})$ and $(-3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})$

14 The points $A(7,2,-2), B(-1,6,-3)$ and $C(-3,1,2)$ are the vertices of a triangle.
a Find $\overrightarrow{B A}$ and $\overrightarrow{B C}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
b Show that $\angle A B C=82.2^{\circ}$ to 1 decimal place.
c Find the area of triangle $A B C$ to 3 significant figures.
15 Relative to a fixed origin, the points A, B and C have position vectors $(3 \mathbf{i}-2 \mathbf{j}-\mathbf{k})$, $(4 \mathbf{i}+3 \mathbf{j}-2 \mathbf{k})$ and $(2 \mathbf{i}-\mathbf{j})$ respectively.
a Find the exact value of the cosine of angle $B A C$.
b Hence show that the area of triangle $A B C$ is $3 \sqrt{2}$.
16 Find, in degrees to 1 decimal place, the acute angle between each pair of lines.
$\mathbf{a} \mathbf{r}=\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}4 \\ -4 \\ 2\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}5 \\ -2 \\ 1\end{array}\right)+\mu\left(\begin{array}{c}8 \\ 0 \\ -6\end{array}\right)$
b $\mathbf{r}=\left(\begin{array}{c}0 \\ -3 \\ 7\end{array}\right)+\lambda\left(\begin{array}{c}6 \\ -1 \\ -18\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}4 \\ 6 \\ -3\end{array}\right)+\mu\left(\begin{array}{c}4 \\ -12 \\ 3\end{array}\right)$
c $\quad \mathbf{r}=\left(\begin{array}{l}7 \\ 1 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}-2 \\ 6 \\ -3\end{array}\right)+\mu\left(\begin{array}{c}2 \\ -5 \\ 3\end{array}\right)$
d $\mathbf{r}=\left(\begin{array}{c}2 \\ -3 \\ -9\end{array}\right)+\lambda\left(\begin{array}{l}-4 \\ -6 \\ 7\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}11 \\ 1 \\ -2\end{array}\right)+\mu\left(\begin{array}{c}5 \\ -1 \\ -8\end{array}\right)$

17 Relative to a fixed origin, the points A and B have position vectors $(5 \mathbf{i}+8 \mathbf{j}-\mathbf{k})$ and $(6 \mathbf{i}+5 \mathbf{j}+\mathbf{k})$ respectively.
a Find a vector equation of the straight line l_{1} which passes through A and B.
The line l_{2} has the equation $\mathbf{r}=4 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}+\mu(-5 \mathbf{i}+\mathbf{j}-2 \mathbf{k})$.
b Show that lines l_{1} and l_{2} intersect and find the position vector of their point of intersection.
c Find, in degrees, the acute angle between lines l_{1} and l_{2}.
18 Find, in degrees to 1 decimal place, the acute angle between the lines with cartesian equations

$$
\frac{x-2}{3}=\frac{y}{2}=\frac{z+5}{-6} \quad \text { and } \quad \frac{x-4}{-4}=\frac{y+1}{7}=\frac{z-3}{-4} .
$$

19 The line l has the equation $\mathbf{r}=7 \mathbf{i}-2 \mathbf{k}+\lambda(2 \mathbf{i}-\mathbf{j}+2 \mathbf{k})$ and the line m has the equation $\mathbf{r}=-4 \mathbf{i}+7 \mathbf{j}-6 \mathbf{k}+\mu(5 \mathbf{i}-4 \mathbf{j}-2 \mathbf{k})$.
a Find the coordinates of the point A where lines l and m intersect.
b Find, in degrees, the acute angle between lines l and m.
The point B has coordinates $(5,1,-4)$.
c Show that B lies on the line l.
d Find the distance of B from m.
20 Relative to a fixed origin O, the points A and B have position vectors $(9 \mathbf{i}+6 \mathbf{j})$ and $(11 \mathbf{i}+5 \mathbf{j}+\mathbf{k})$ respectively.
a Show that for all values of λ, the point C with position vector $(9+2 \lambda) \mathbf{i}+(6-\lambda) \mathbf{j}+\lambda \mathbf{k}$ lies on the straight line l which passes through A and B.
b Find the value of λ for which $O C$ is perpendicular to l.
c Hence, find the position vector of the foot of the perpendicular from O to l.
21 Find the coordinates of the point on each line which is closest to the origin.
a $\quad \mathbf{r}=-4 \mathbf{i}+2 \mathbf{j}+7 \mathbf{k}+\lambda(\mathbf{i}+3 \mathbf{j}-4 \mathbf{k})$
b $\mathbf{r}=7 \mathbf{i}+11 \mathbf{j}-9 \mathbf{k}+\lambda(6 \mathbf{i}-9 \mathbf{j}+3 \mathbf{k})$

