3 Probability

Answers

Skills check

1 a $1-\frac{3}{7}=\frac{7}{7}-\frac{3}{7}=\frac{4}{7}$
b $\frac{2}{5}+\frac{5}{7}=\frac{14+25}{35}=\frac{39}{35}=1 \frac{4}{35}$
c $\frac{1}{5} \times \frac{2}{3}=\frac{2}{15}$
d $\quad 1-\left(\frac{1}{3} \times \frac{5}{9}\right)=1-\frac{5}{27}=\frac{27-5}{27}=\frac{22}{27}$
e $\left(\frac{2}{3} \times \frac{7}{9}\right)+\left(\frac{1}{3} \times \frac{5}{9}\right)=\frac{14}{27}+\frac{5}{27}=\frac{19}{27}$
f $\frac{\frac{3}{20}}{\frac{7}{20}}=\frac{3}{20} \times \frac{20}{7}=\frac{3}{7}$
2 a $1-0.375=0.625$
b $0.65+0.05=0.7$
c $0.25 \times 0.64=0.16$
d 50% of $30=0.5 \times 30=15$
e 22% of $0.22=0.22 \times 0.22=0.0484$
f 12% of 10% of $0.8=0.12 \times 0.1 \times 0.8=0.0096$

Exercise 3A

1 a $\mathrm{P}(2,4,6,8)=\frac{4}{8}=\frac{1}{2}$
b $\quad \mathrm{P}(3,6)=\frac{2}{8}=\frac{1}{4}$
c $\mathrm{P}(4,8)=\frac{2}{8}=\frac{1}{4}$
d $P(1,2,3,5,6,7)=\frac{6}{8}=\frac{3}{4}$ or
$1-\mathrm{P}(4,8)=1-\frac{1}{4}=\frac{3}{4}$
e $\mathrm{P}(1,2,3)=\frac{3}{8}$
$2 \mathrm{P}($ defective car $)=\frac{\text { number defective }}{\text { number of cars }}=\frac{30}{150}=\frac{1}{5}$
3 a i 0.21
ii $0.19+0.14=0.33$
b Proportion of 15 year old students $=0.21$
Therefore $0.21 \times 1200=252$ students who are 15 .
4 a $\frac{27}{100}=0.27$
b No - the frequencies for different numbers are very different
c $\frac{15}{100} \times 300=45$
5 a $\frac{\text { number of c's }}{\text { number of letters }}=\frac{2}{11}$
b $\frac{\text { number of } \mathrm{p} \text { 's }}{\text { number of letters }}=\frac{0}{11}=0$
C $\frac{\text { number of vowels }}{\text { number of letters }}=\frac{5}{11}$
$6 \mathrm{P}($ red $)+\mathrm{P}($ yellow $)+\mathrm{P}($ green $)+\mathrm{P}($ blue $)=1$
Let $\mathrm{P}($ yellow $)=x$ so $\mathrm{P}($ green $)=2 x$
$0.4+x+2 x+0.3=1$
$3 x=0.3$
$x=0.1$
Therefore $P($ green $)=0.2$
7 a $\frac{\text { number of even numbers }}{\text { number of possible outcomes }}=\frac{20}{40}=\frac{1}{2}$
b $\{1,10,11,12,13,14,15,16,17,18,19,21,31\}$
c $\frac{\text { number that contain digit } 1}{\text { number of possible outcomes }}=\frac{13}{40}$

Exercise 3B

$1 n($ blond and brown $)=4$
$n($ blond and not brown $)=10-4=6$
$n($ brown and not blond $)=14-4=10$
$n($ neither blond or brown $)=35-(6+4+10)=15$

$\mathrm{P}($ blond hair or blue eyes $)=\frac{6+4+10}{35}=\frac{20}{35}=\frac{4}{7}$
$2 n($ French and Malay $)=x$
$n(\mathrm{~F}$ and $\operatorname{not} \mathrm{M})=15-x$
$n(\mathrm{M}$ and not F$)=13-x$
$n($ neither F or M$)=5$
Therefore $x+(15-x)+(13-x)+5=25$
$33-x=25$
$x=8$

$P(F$ and $M)=\frac{8}{25}$
$3 n$ (Aerobics and Gymnastics $)=x$
$n(\mathrm{~A}$ and not $G)=13-x$
$n(\mathrm{G}$ and not A$)=17-x$
$n($ neither A or G$)=1$
Therefore $x+(13-x)+(17-x)+1=25$
$31-x=25$
$x=6$

a $\mathrm{P}(\mathrm{A}$ and G$)=\frac{6}{25}$
b $\mathrm{P}(\mathrm{G}$ and $\operatorname{not} \mathrm{A})=\frac{11}{25}$
$4 n($ Golf and Piano $)=7$
$n(G$ and not $P)=18-7=11$
$n(\mathrm{P}$ and not G$)=16-7=9$
$n($ neither G or $P)=32-(7+11+9)=5$

a $\mathrm{P}(\mathrm{G}$ and $\operatorname{not} \mathrm{P})=\frac{11}{32}$
b $P(P$ and not $G)=\frac{9}{32}$
5 a $A=\{$ integers that are multiples of 3$\}$
$=\{3,6,9,12,15\}$
$B=\{$ integers that are factors of 30$\}$
$=\{1,2,3,5,6,10,15\}$
b

c i P(both a multiple of 3 and a factor of 30$)=\frac{3}{15}=\frac{1}{5}$
ii P (Neither a multiple of 3 or a factor of 30$)=\frac{6}{15}=\frac{2}{5}$
$6 n($ A \& B, not C) $=5 \%-2 \%=3 \%$
$n(\mathrm{~A} \& \mathrm{C}, \operatorname{not} \mathrm{B})=4 \%-2 \%=2 \%$
$n(\mathrm{~B} \& \mathrm{C}, \operatorname{not} \mathrm{A})=3 \%-2 \%=1 \%$
$n(\mathrm{~A}, \operatorname{not} \mathrm{~B}$ or C$)=40 \%-(2 \%+3 \%+2 \%)=33 \%$
$n(\mathrm{~B}, \operatorname{not} \mathrm{~A}$ or C$)=30 \%-(2 \%+3 \%+1 \%)=24 \%$
$n(\mathrm{C}, \operatorname{not} \mathrm{A}$ or B$)=10 \%-(2 \%+2 \%+1 \%)=5 \%$

a $\mathrm{P}($ only A$)=0.33$
b $\mathrm{P}($ only B$)=0.24$
c $\mathrm{P}($ none $)=0.3$

Exercise 3C

1
$\frac{\text { number that are divisible by } 5}{\text { number of possible outcomes }}=\frac{\text { frequencies of }\{5,10\}}{\text { number of possible outcomes }}$

$$
=\frac{34+68}{500}=\frac{102}{500}=\frac{51}{250}
$$

b $\frac{\text { number that are even }}{\text { number of possible outcomes }}$
$=\frac{\text { frequencies of }\{2,4,6,8,10,12\}}{\text { number of possible outcomes }}$
$=\frac{6+21+65+63+68+42}{500}=\frac{265}{500}=\frac{53}{100}$
c $\frac{\text { number that are divisible by } 5 \text { or even }}{\text { number of possible outcomes }}$
$=\frac{\text { frequencies of }\{2,4,5,6,8,10,12\}}{\text { number of possible outcomes }}$
$=\frac{6+21+65+63+68+42+34}{500}=\frac{299}{500}$
or P (sum divisible by $5 \cup$ sum even)
$=\mathrm{P}($ sum divisible by 5$)+\mathrm{P}($ sum even $)$

- P(sum divisible by $5 \cap$ sum even)
$=\frac{102}{500}+\frac{265}{500}-\frac{68}{500}=\frac{299}{500}$
2 a $\mathrm{P}($ prime $)=\frac{4}{10}=\frac{2}{5}$ [primes are $2,3,5,7$]
b $\mathrm{P}($ prime or multiple of 3$)=\frac{4}{10}+\frac{3}{10}-\frac{1}{10}=\frac{6}{10}=\frac{3}{5}$
c $\mathrm{P}($ multiple of 3 or 4$)=\frac{3}{10}+\frac{2}{10}=\frac{5}{10}=\frac{1}{2}$
3 P (camera owner or female)
$=\mathrm{P}($ camera owner $)+\mathrm{P}($ female $)$
- P(female camera owner)
$=\frac{40}{80}+\frac{50}{80}-\frac{22}{80}=\frac{68}{80}=\frac{17}{20}$
4 a 8 different letters in MATHEMATICS $\{\mathrm{M}, \mathrm{A}$, T, H, E, I, C, S $\} \cdot \frac{8}{26}=\frac{4}{13}$
b 9 different letters in TRIGONOMETRY
$\{T, R, I, G, O, N, M, E, Y\} \frac{9}{26}$
c $\quad\{\mathrm{M}, \mathrm{T}, \mathrm{E}, \mathrm{I}\} \frac{4}{26}=\frac{2}{13}$
d $\quad\{\mathrm{M}, \mathrm{A}, \mathrm{T}, \mathrm{H}, \mathrm{E}, \mathrm{I}, \mathrm{C}, \mathrm{S}, \mathrm{R}, \mathrm{G}, \mathrm{O}, \mathrm{N}, \mathrm{Y}\} \frac{13}{26}=\frac{1}{2}$
5 a P (work of fiction, non-fiction, or both $)=$ $0.40+0.30-0.20=0.5$
b $\mathrm{P}($ no book $)=1-0.5=0.5$

6 Let $\mathrm{P}($ local and national $)=x$
$\mathrm{P}($ national and not local $)=\frac{1}{4}-x$
$\mathrm{P}($ local and not national $)=\frac{3}{5}-x$
$\frac{2}{3}=\left(\frac{1}{4}-x\right)+\left(\frac{3}{5}-x\right)+x$
$x=\frac{11}{60}$
7 a $\quad P(X \cup Y)=P(X)+P(Y)-P(X \cap Y)$

$$
=\frac{1}{4}+\frac{3}{8}-\frac{1}{8}=\frac{4}{8}=\frac{1}{2}
$$

b $\quad P(X \cup Y)^{\prime}=1-P(X \cup Y)=1-\frac{1}{2}=\frac{1}{2}$
$8 \quad$ a $\quad P(A \cup B)=P(A)+P(B)-\mathrm{P}(A \cup B)$

$$
=0.2+0.5-0.1=0.6
$$

b $\quad P(A \cup B)^{\prime}=1-P(A \cup B)=1-0.6=0.4$
c $\quad P\left(A^{\prime} \cup B\right)=1-P\left(A \cap B^{\prime}\right)$

$$
\begin{aligned}
& =1-[P(A)-P(A \cap B)] \\
& =1-[0.2-0.1]=0.9
\end{aligned}
$$

Exercise 3D

1 a A and $\mathrm{B}=\mathrm{N}$
b $\quad \mathrm{A}$ and $\mathrm{C}=\mathrm{Y}$
c $\quad \mathrm{A}$ and $\mathrm{D}=\mathrm{N}$
d A and $\mathrm{E}=\mathrm{Y}$
e B and $E=N$
f C and $\mathrm{D}=\mathrm{N}$
g $\quad \mathrm{B}$ and $\mathrm{C}=\mathrm{N}$
2 Let $P(N \cap M)=x$. If $P(N \cap M)=0$ then $N \& M$ are mutually exclusive.
Now $P(N \cup M)=P(N)+P(M)-P(N \cup M)$, so
$\frac{3}{10}=\frac{1}{5}+\frac{1}{10}-x$
$x=0$
Therefore yes
$3 \frac{30}{89}+\frac{27}{89}=\frac{57}{89}$
4 a $\frac{1}{3}+\frac{1}{4}=\frac{4+3}{12}=\frac{7}{12}$
b $\frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{20+15+12}{60}=\frac{47}{60}$
c $1-\frac{47}{60}=\frac{13}{60}$

Exercise 3E

1 \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}
a $\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\} \frac{1}{2}$
b $\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{THH}\} \frac{3}{8}$
c $\{\mathrm{HTH}, \mathrm{THT}\} \frac{1}{4}$
2

a $\frac{6}{16}=\frac{3}{8}$

b $\frac{6}{16}=\frac{3}{8}$

	BLUE				
RED	1	2	3	4	
	1	$(1,1)$	$(1,2)$	$(1,3)$	
	2	$(2,1)$	$(2,2)$	$(2,3)$	
$(2,4)$					
	3	$(3,1)$	$(3,2)$	$(3,3)$	
	$(3,4)$				
	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	

c $\frac{4}{16}=\frac{1}{4}$

d $\frac{9}{16}$

3

	Box 1			
Box 2		1	2	3
	2	$(2,1)$	$(2,2)$	$(2,3)$
	3	$(3,1)$	$(3,2)$	$(3,3)$
	4	$(4,1)$	$(4,2)$	$(4,3)$
	5	$(5,1)$	$(5,2)$	$(5,3)$

a $\frac{2}{12}=\frac{1}{6}$

	Box 1			
Box 2	1	2	3	
	2	$(2,1)$	$(2,2)$	
	3	$(3,1)$	$(3,2)$	
	4	$(4,1)$	$(4,2)$	
	5	$(4,1)$	$(5,2)$	
	$(5,3)$			

b $\quad \frac{3}{12}=\frac{1}{4}$

c $\frac{9}{12}=\frac{3}{4}$

d
$\frac{5}{12}$

e $\frac{8}{12}=\frac{2}{3}$

4

a $\frac{6}{36}=\frac{1}{6}$

b $\quad \frac{20}{36}=\frac{5}{9}$

	First draw						
Second draw	0	0	1	2	3	4	5
	0	$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$	$(0,5)$
	1	$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$
	2	$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$
	3	$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$
	4	$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$
	5	$(5,0)$	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$

c $\frac{26}{36}=\frac{13}{18}$

d $\frac{13}{36}$
First draw

Second draw	0	0	1	2	3	4	5
	0	$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$	$(0,5)$
	1	$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$
	2	$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$
	3	$(3,0)$	$(3,1)$	$(3,2)$	$(2,3)$	$(3,4)$	$(3,5)$
	4	$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$
	5	$(5,0)$	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$

e $\frac{20}{36}=\frac{5}{9}$

5 When rolling the dice twice, there are 36 possible outcomes
a $\{(1,3),(2,4),(3,1),(4,2),(5,5),(5,6),(6,5)$, $(6,6)\} ; \frac{8}{36}=\frac{2}{9}$
b $\{(1,1),(2,2),(3,3),(4,4)\} ; \frac{4}{36}=\frac{1}{9}$
c $\{(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1)$, $(4,3)\} ; \frac{8}{36}=\frac{2}{9}$

Exercise 3F

1 $\frac{1}{5} \times \frac{1}{5}=\frac{1}{25}$
$2 \quad \mathrm{P}(K) \times \mathrm{P}(10)=\frac{4}{52} \times \frac{4}{52}=\frac{1}{169}$
$3\left(\frac{4}{5}\right)^{3}=\frac{64}{125}$
$4 \mathrm{P}(C) \times \mathrm{P}(H)=0.75 \times 0.85=0.6375=0.638$
5 a $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
Let $P(B)=x$.
$0.4=0.2+x-0$
$x=0.2$
$\mathrm{P}(B)=0.2$
$\mathrm{P}(B \cup C)=\mathrm{P}(B)+\mathrm{P}(C)-\mathrm{P}(B \cap C)$
Let $\mathrm{P}(B \cap C)=y$.
$0.34=0.2+0.3-y$
$y=0.16$
$\mathrm{P}(B \cap C)=0.16$
b $\quad \mathrm{P}(B) \times \mathrm{P}(C)=0.2 \times 0.3=0.06$
$\mathrm{P}(B \cap C)=0.16$
$\mathrm{P}(B \cap C) \neq \mathrm{P}(B) \times \mathrm{P}(C)$
Not independent
$6 \quad \mathrm{P}(H) \times \mathrm{P}(\overline{6})=\frac{1}{2} \times \frac{5}{6}=\frac{5}{12}$
$7\left(\frac{1}{9}\right)^{5}=\frac{1}{59049}$
$8 \mathrm{P}(H)=\frac{1}{4}$, therefore for 4 hearts $\left(\frac{1}{4}\right)^{4}=\frac{1}{256}$
9 a $\mathrm{P}(E)=1-\mathrm{P}\left(E^{\prime}\right)=1-0.6=0.4$
b $\mathrm{P}(E) \times \mathrm{P}(F)=0.4 \times 0.6=0.24=\mathrm{P}(E \cap F)$
c $\mathrm{P}(E \cap F) \neq 0$
d $\mathrm{P}\left(E \cup F^{\prime}\right)=\mathrm{P}(E)+\mathrm{P}\left(F^{\prime}\right)-\mathrm{P}\left(E \cap F^{\prime}\right)$
We know that since $E \& F$ are independent,
$\mathrm{P}\left(E \cap F^{\prime}\right)=\mathrm{P}(E) \times \mathrm{P}\left(F^{\prime}\right)=0.4 \times 0.4$
$\mathrm{P}\left(E \cup F^{\prime}\right)=0.4+0.4-(0.4 \times 0.4)=0.64$
$10 \mathrm{P}\left(\mathrm{R}_{1}\right.$ and B_{2} and $\left.\mathrm{R}_{3}\right)=\frac{4}{12} \times \frac{8}{12} \times \frac{4}{12}=\frac{2}{27}$
$11\{2,2,2\} ;\left(\frac{1}{3}\right)^{3}=\frac{1}{27}$
12 a $\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B)=0.9 \times 0.3=0.27$
since $A \& B$ are independent
b $\mathrm{P}\left(A \cap B^{\prime}\right)=0.9 \times 0.7=0.63$
(since $\mathrm{P}\left(B^{\prime}\right)=1-\mathrm{P}(B)=0.7$)
c $\mathrm{P}(A \cup B)^{\prime}=1-\mathrm{P}(A \cup B)$
$=1-[\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)]$
$=1-(0.9+0.3-0.27)$
$=0.07$

13

$G \& H$ are independent, so $\mathrm{P}(G \cap H)=\mathrm{P}(G) \times \mathrm{P}(H)$ Now $\mathrm{P}(G)=0.12+x$, and $\mathrm{P}(H)=0.42+x$, so
$(0.12+x)(0.42+x)=x$
$x^{2}-0.46 x+0.0504=0$
$x=0.18,0.28$
14 a $\mathrm{P}(4$ sixes $)=\left(\frac{1}{6}\right)^{4}=\frac{1}{1296}$
b $\quad P(4$ same $)=6\left(\frac{1}{6}\right)^{4}=\frac{6}{1296}=\frac{1}{216}$
15 rolling a 'six' on four throws of one dice:
P (rolling a 'six' on four throws of one
dice $)=1-\left(\frac{5}{6}\right)^{4}=1-\frac{625}{1296}=\frac{671}{1296}=0.518$
P(rolling a 'double six' on 24 throws with two dice $)=1-\left(\frac{35}{36}\right)^{24}=1-0.5085 \ldots=0.491$
16 a $\mathrm{P}($ not a 5$)=0.9$. we require $(0.9)^{3}=0.729$
b $\quad 1-\mathrm{P}($ none is a 5$)=1-0.729=0.271$

Exercise 3G

1 Let $n(A \cap D)=x$

$$
\begin{aligned}
& 15-x+x+20-x+4=27 \\
& 39-x=27 \\
& x=12
\end{aligned}
$$

a $P($ Drama not Art $)=\frac{8}{27}$
b $\quad \mathrm{P}$ (Takes at least one of the two subjects)
$=1-\mathrm{P}($ takes none $)=1-\frac{4}{27}=\frac{23}{27}$
c $P($ Takes both subjects, given that he takes Art)
$=\frac{\frac{12}{27}}{\frac{15}{27}}=\frac{12}{15}=\frac{4}{5}$

2 a $\mathrm{P}(A \cup B)=1-\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)=1-0.35=0.65$
$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
$0.65=0.25+0.6-\mathrm{P}(A \cap B)$
$\mathrm{P}(A \cap B)=0.85-0.65=0.2$
b $\quad \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$
$=\frac{0.2}{0.6}$
$=\frac{1}{3}$
c $\quad \mathrm{P}\left(B^{\prime} \mid A^{\prime}\right)=\frac{\mathrm{P}\left(B^{\prime} \cap A^{\prime}\right)}{\mathrm{P}\left(A^{\prime}\right)}$
$=\frac{0.35}{0.75}$
$=\frac{7}{15}$
$3 \quad P(R \mid S)=\frac{P(R \cap S)}{P(S)}$
$=\frac{0.39}{0.48}$
$=0.8125=\frac{13}{16}$
4 a $P\left(E \mid M^{\prime}\right)=\frac{P\left(E \cap M^{\prime}\right)}{P\left(M^{\prime}\right)}$
$=\frac{0.25}{0.75}$
$=\frac{1}{3}$
b $\quad P(<15 \mid>5)=\frac{P(<15 \cap>5)}{P(>5)}$

$$
\begin{aligned}
& =\frac{\frac{2}{8}}{\frac{5}{8}} \\
& =\frac{2}{5}
\end{aligned}
$$

c $\quad P(<5 k 15)=\frac{P(<5 \cap<15)}{P(<15)}$

$$
\begin{aligned}
& =\frac{\frac{3}{8}}{\frac{5}{8}} \\
& =\frac{3}{5}
\end{aligned}
$$

d $\quad P($ between 10 and $20 \mid$ between 5 and 25)
$=\frac{P(\text { between } 10 \text { and } 20 \text { and between } 5 \text { and 25) }}{P(\text { between } 5 \text { and 25) }}$

$$
\begin{aligned}
& =\frac{\frac{2}{8}}{4} \\
& \frac{1}{8} \\
& =\frac{1}{2}
\end{aligned}
$$

$5 \mathrm{P}(L \mid D)=\frac{\mathrm{P}(D \cap L)}{\mathrm{P}(D)}=\frac{0.61}{0.95}=\frac{61}{95}$
$6 \mathrm{P}(S \mid T)=\frac{\mathrm{P}(T \cap S)}{\mathrm{P}(T)}=\frac{0.1}{0.6}=\frac{1}{6}$
7 a $P(U$ and $V)=0$ by definition
b $\mathrm{P}(\mathrm{U} \mid \mathrm{V})=0$ by definition
c $\mathrm{P}(\mathrm{U}$ or V$)=\mathrm{P}(\mathrm{U})+\mathrm{P}(\mathrm{V})=0.26+0.37=0.63$
$8 \frac{\mathrm{P}(\text { Pass both })}{\mathrm{P}(\text { Pass first })}=\frac{0.35}{0.52}=0.673$. Therefore 67.3%
$9 \mathrm{P}\left(\mathrm{B}_{1}\right.$ and $\left.\mathrm{W}_{2}\right)=0.34 ; \mathrm{P}\left(\mathrm{B}_{1}\right)=0.47$.
$\mathrm{P}\left(\mathrm{W}_{2} \mid \mathrm{B}_{1}\right)=\frac{\mathrm{P}\left(B_{1} \text { and } W_{2}\right)}{\mathrm{P}\left(B_{1}\right)}=\frac{0.34}{0.47}=\frac{34}{47}$
10 a $\mathrm{P}($ male and left handed $)=\frac{5}{50}=\frac{1}{10}$

	Left handed	Right handed	Total
Male	5	32	37
Female	2	11	13
Total	7	43	50

b $\quad \mathrm{P}($ right handed $)=\frac{43}{50}$

	Left handed	Right handed	Total
Male	5	32	37
Female	2	11	13
Total	7	43	50

c P (right handed, given that the player selected is female) $=\frac{11}{13}$

	Left handed	Right handed	Total
Male	5	32	37
Female	2	11	13
Total	7	43	50

$11 \mathrm{P}(J \mid K)=\frac{\mathrm{P}(J \cap K)}{\mathrm{P}(K)}$
$J \& K$ are independent, so $\mathrm{P}(J \cap K)=\mathrm{P}(J) \times \mathrm{P}(K)$
$\therefore \mathrm{P}(J \mid K)=\frac{\mathrm{P}(J) \times(K)}{\mathrm{P}(K)}=\mathrm{P}(J)$
so $\mathrm{P}(J)=\mathrm{P}(J \mid K)=0.3$
12 Let T be the event the neighbor has 2 boys and S be the event that the neighbor has a son
The possible options are $\{\mathrm{BB}, \mathrm{BG}, \mathrm{GB}, \mathrm{GG}\}$
Event S , the neighbor has a son is the set
$S=\{B B, B G, G B\}$
Event T, that the neighbor has two boys is the set $\mathrm{T}=\{\mathrm{BB}\}$
We require $\mathrm{P}(T \mid S)=\frac{\mathrm{P}(T \cap S)}{\mathrm{P}(S)}=\frac{\mathrm{P}(\{B B\})}{\mathrm{P}(\{B B, B G, G B\})}$

$$
=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3}
$$

Exercise 3H

1 a

b $\quad \mathrm{P}(\mathrm{C}$ and I$)$ or $\mathrm{P}(\mathrm{I}$ and C$)$
$=\left(\frac{2}{3} \times \frac{1}{3}\right)+\left(\frac{1}{3} \times \frac{2}{3}\right)=\frac{2}{9}+\frac{2}{9}=\frac{4}{9}$
c $\quad 1-\mathrm{P}($ none correct $)=1-\left(\frac{1}{3} \times \frac{1}{3}\right)=1-\left(\frac{1}{9}\right)=\frac{8}{9}$

2
Laura Michelle

$P($ neither will score in the next game $)=\frac{2}{3} \times \frac{1}{2}=\frac{1}{3}$

3

a $\quad \frac{1}{2} \times \frac{5}{12}=\frac{5}{24}$
b $\left(\frac{1}{2} \times \frac{2}{5}\right)+\left(\frac{1}{2} \times \frac{5}{12}\right)=\frac{1}{5}+\frac{5}{24}=\frac{49}{120}$
$4 \mathrm{P}($ Head $)=\frac{2}{3}$ We require HHT or HTH or THH.
Each has probability $\frac{2}{3} \times \frac{2}{3} \times \frac{1}{3}=\frac{4}{27}$. Therefore
P $($ HHT or HTH or $T H H)=3 \times \frac{4}{27}=\frac{4}{9}$
5 a $\mathrm{P}($ Prime $)=0.4$.
$\mathrm{P}($ exactly one Prime $)=\mathrm{P}($ Prime and not prime $)+\mathrm{P}($ not prime and prime $)=(0.4 \times 0.6)$ $+(0.6 \times 0.4)=0.48$
b $\quad \mathrm{P}($ at least one prime $)=1-\mathrm{P}($ no primes $)=$ $1-(0.6 \times 0.6)=1-0.36=0.64$

6 a

b $\mathrm{P}($ rainy $)=\mathrm{P}(\mathrm{W}$ and R$)$ or $\mathrm{P}\left(\mathrm{W}^{\prime}\right.$ and R$)=$ $(0.6 \times 0.4)+(0.4 \times 0.2)=0.24+0.08=0.32$
c P (two successive days not being rainy) $=$ P (not rainy) $\times \mathrm{P}$ (not rainy)
$P($ not rainy $)=1-0.32=0.68$
$0.68 \times 0.68=0.4624$

Exercise 31

1 a $\mathrm{P}($ picture card $)=\frac{12}{52}$
We require $\frac{12}{52} \times \frac{11}{51} \times \frac{10}{50}=\frac{11}{1105}$
b We require $P P \bar{P}$ or $P \bar{P} P$ or $\bar{P} P P$. Each of these has equal probability of $\frac{12}{52} \times \frac{11}{51} \times \frac{40}{50}=\frac{44}{1105}$ $P(P P \bar{P}$ or $P \bar{P} P$ or $\bar{P} P P)=3 \times \frac{44}{1105}=\frac{132}{1105}$
2

a $\quad \mathrm{P}($ two faulty $)=\frac{5}{12} \times \frac{4}{11}=\frac{5}{33}$
b P (exactly one faulty)

$$
=\left(\frac{5}{12} \times \frac{7}{11}\right)+\left(\frac{7}{12} \times \frac{5}{11}\right)=\frac{35}{132}+\frac{35}{132}=\frac{35}{66}
$$

c $\mathrm{P}\left(\mathrm{F}_{2} \mid\right.$ exactly one faulty pen $)$
$=\frac{\mathrm{P}\left(\mathrm{F}_{2} \text { and exactly one faulty pen }\right)}{\mathrm{P}(\text { exactly one faulty pen })}=\frac{\frac{7}{12} \times \frac{5}{11}}{\frac{35}{66}}=\frac{1}{2}$
3 a $\frac{3}{9} \times \frac{2}{8}=\frac{1}{12}$
b $\mathrm{P}(\mathrm{RR}$ or GG or YY$)=$

$$
\left(\frac{4}{9} \times \frac{3}{8}\right)+\left(\frac{3}{9} \times \frac{2}{8}\right)+\left(\frac{2}{9} \times \frac{1}{8}\right)=\frac{5}{18}
$$

c We require $\mathrm{P}(\mathrm{YY}$ or $Y G$ or $G G$ or $G Y)$

$$
=\left(\frac{2}{9} \times \frac{1}{8}\right)+\left(\frac{2}{9} \times \frac{3}{8}\right)+\left(\frac{3}{9} \times \frac{2}{8}\right)+\left(\frac{3}{9} \times \frac{2}{8}\right)=\frac{5}{18}
$$

d We require $\mathrm{P}(\bar{R}$ and $\bar{R})=\frac{5}{9} \times \frac{4}{8}=\frac{5}{18}$
4 P (one of each color $)=\mathrm{P}($ RBOP in any order $)$
$P(R B O P)=\frac{5}{14} \times \frac{4}{13} \times \frac{3}{12} \times \frac{2}{11}=\frac{5}{1001}$
We can arrange RBOP in 24 ways
Therefore required probability $=24 \times \frac{5}{1001}=\frac{30}{1001}$
5 a $\frac{4}{10}=\frac{2}{5}$
b $\left(\frac{4}{10} \times \frac{6}{9}\right)+\left(\frac{6}{10} \times \frac{4}{9}\right)=\frac{8}{15}$

6

a P (at least one of the students answers the question correctly) $=1-\mathrm{P}$ (both incorrect)

$$
=1-\left(\frac{2}{7} \times \frac{4}{9}\right)=\frac{55}{63}
$$

b P (Billy correct given that the answer is

$$
\text { correct) }=\frac{\frac{5}{7}}{\frac{55}{63}}=\frac{9}{11}
$$

c $\mathrm{P}($ Natasha correct given that the answer is

$$
\text { correct })=\frac{\frac{5}{9}}{\frac{55}{63}}=\frac{7}{11}
$$

d P (two correct answers given that there were

$$
\text { one) }=\frac{\frac{5}{7} \times \frac{5}{9}}{\frac{55}{63}}=\frac{25}{55}=\frac{5}{11}
$$

Review exercise

1 There are 90 numbers from 10 to 99 inclusive.
a $\{10,15,20, \ldots, 90,95\}$ or every 5 th number is divisible by 5 so $\frac{18}{90}=\frac{1}{5}$
b $\{3,6,9,12, \ldots, 96,99\}$ or every 3 rd number is divisible by 3 so $\frac{1}{3}$
c $\{51,52,53, \ldots 98,99\} \frac{49}{90}$
d $\quad\{16,25,36,49,64,81\} \frac{6}{90}=\frac{1}{15}$
2 Let $n(C \cap D)=x$

$18-x+x+20-x+3=30$
$41-x=30$
$x=11$
$\mathrm{P}($ Cat and $\operatorname{Dog})=\frac{11}{30}$

3 Let $\mathrm{P}(C \cap D)=x$

a $\quad 0.7-x+x+0.2-x+0.25=1$
$1.15-x=1$

$$
x=0.15
$$

$\therefore P\left(C \cap D^{\prime}\right)=P(C)-P(C \cap D)$

$$
=0.7-0.15=0.55
$$

b Not independent since $\mathrm{P}(C \cap D)=0.15$ and $\mathrm{P}(C) \times \mathrm{P}(D)=0.7 \times 0.2=0.14$

4 a We require $\mathrm{P}(A \cap B)$
$\mathrm{P}(A / B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$
$0.1=\frac{\mathrm{P}(A \cap B)}{0.2}$
$\mathrm{P}(A \cap B)=0.1 \times 0.2=0.02$
b We require $\mathrm{P}(A \cup B)$
$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
$\mathrm{P}(A \cup B)=0.6+0.2-0.02$
$\mathrm{P}(A \cap B)=0.78$
c We require
$\mathrm{P}(A \cup B)-\mathrm{P}(A \cap B)$
$=0.78-0.02$
$=0.76$
d We require $\mathrm{P}(B \mid A)$
$\mathrm{P}(B \mid A)=\frac{\mathrm{P}(B \cap A)}{\mathrm{P}(A)}$
$=\frac{0.02}{0.6}=\frac{1}{30}=0.0333$

5 a $6 x$
b

c $\quad 6 x+3+2 x+20+15+7+x+10=100$
$9 x+55=100$
$9 x=45$
$x=5$

Review exercise

1 a $\mathrm{P}(C \cap D)=\mathrm{P}(C \mid D) \times \mathrm{P}(D)$
$=0.6 \times 0.5$
$=0.3$
b No since $\mathrm{P}(C$ and $D) \neq 0$
c No since $\mathrm{P}(C) \times \mathrm{P}(D)=0.4 \times 0.5=0.2 \neq$ $\mathrm{P}(C$ and $D)$
d $\quad \mathrm{P}(C \cup D)=\mathrm{P}(C)+\mathrm{P}(D)-\mathrm{P}(C \cap D)$
$=0.4+0.5-0.3$
$=0.6$
e $\mathrm{P}(D \mid C)=\frac{\mathrm{P}(D \cap C)}{\mathrm{P}(C)}$
$=\frac{0.3}{0.4}=0.75$
2

a $\mathrm{P}($ Properly $)=\mathrm{P}($ Jack and Properly $)+\mathrm{P}($ Jill $\begin{aligned}\text { and Properly })= & \left(\frac{3}{5} \times 0.35\right)+\left(\frac{2}{5} \times 0.55\right) \\ & =0.21+0.22=0.43\end{aligned}$
b $\quad \mathrm{P}($ Jill \mid Not Properly $)=\frac{\mathrm{P}(\text { Jill and not properly })}{\mathrm{P}(\text { Not Properly })}$

$$
=\frac{\frac{2}{5} \times 0.45}{0.57}=0.316
$$

3 a

b i P(Travels by bicycle on Monday and Tuesday) $=0.3 \times 0.3=0.09$
ii P (Travels by bicycle on Monday and by bus on Tuesday) $=0.3 \times 0.6=0.18$
iii P (Travels by the same method of travel on Monday and Tuesday $)=(0.3 \times 0.3)+$ $(0.6 \times 0.6)+(0.1 \times 0.1)=0.46$
c $\mathrm{P}($ not by bicycle on 3 days $)=0.7 \times 0.7 \times 0.7$ $=0.343$
d P (twice by car \& once by bus)
$=P($ car \cap car \cap bus $)+\mathrm{P}($ car \cap bus \cap car $)$
+P (bus \cap car \cap car $)$
Now $P($ car \cap car \cap bus $)=(0.1 \times 0.1 \times 0.6)$
So P(twice by car \& once by bus)
$=3 \times(0.1 \times 0.1 \times 0.6)=0.018$
P (twice by bicycle \& once by car)
$=\mathrm{P}($ bike \cap bike \cap car $)+\mathrm{P}$ (bike \cap car \cap bike $)$ $+\mathrm{P}(\mathrm{car} \cap$ bike \cap bike $)$
Now $\mathrm{P}($ bike \cap bike $\cap \mathrm{car})=(0.3 \times 0.3 \times 0.1)$
So P(twice by bicycle \& once by car)
$=3 \times(0.3 \times 0.3 \times 0.1)=0.027$
Thus,
P (twice by car \& once by bus or twice by bicycle $\&$ once by car) $=0.018+0.027=0.045$

4 a $\frac{6}{16}=\frac{3}{8}$
b $\frac{10}{15}=\frac{2}{3}$
c $\quad \frac{5}{15} \times \frac{4}{14}=\frac{2}{21}$

5

n (Female and not eating carrots) $=23$
$n($ Female and eating carrots $)=42-23=19$
n (not female and eating carrots) $=x$
Now $70-(19+x)=34$

$$
x=17 .
$$

a $\mathrm{P}(\mathrm{a}$ rabbit is male and not eating carrots) $=\frac{11}{70}$
b P (a rabbit is female | that it is eating
carrots) $=\frac{\frac{19}{70}}{\frac{36}{70}}=\frac{19}{36}$
c No; $\mathrm{P}(\mathrm{F}) \times \mathrm{P}(\mathrm{C})=\frac{42}{70} \times \frac{36}{70}=\frac{78}{2450} \neq \mathrm{P}(\mathrm{F}$ and C$)$

