C3 Rational Expressions

1 Express $\frac{6}{x^{2}-9}-\frac{7}{2 x^{2}-5 x-3}$ as a single fraction in its simplest form.

2

$$
\mathrm{f}(x) \equiv \frac{3}{2 x+3}-\frac{x+9}{2 x^{2}+11 x+12}, \quad x>0
$$

Show that $\mathrm{f}(x)=\frac{1}{x+4}$.

3 a Express $\frac{1}{x-6}-\frac{2}{x^{2}-36}$ as a single fraction in its simplest form.
b Hence solve the equation

$$
\begin{equation*}
\frac{1}{x-6}-\frac{2}{x^{2}-36}=\frac{1}{2}, \tag{4}
\end{equation*}
$$

giving your answers in the form $a+b \sqrt{5}$, where $a, b \in \mathbb{Z}$.

4

$$
\begin{equation*}
\mathrm{f}(x) \equiv 2 x^{3}-5 x^{2}-23 x-10 \tag{2}
\end{equation*}
$$

a Show that $(x-5)$ is a factor of $\mathrm{f}(x)$.
b Express $\frac{\mathrm{f}(x)}{2 x^{2}-9 x-5}$ in its simplest form.

5 Given that the equation

$$
\begin{equation*}
\frac{x+6}{x^{2}+9 x+18}+\frac{x-p}{x+7}=0 \tag{7}
\end{equation*}
$$

has real, equal roots, find the possible values of the constant p.

6 Express $\frac{1}{3 x-1}-\frac{3 x}{9 x^{2}-6 x+1}-\frac{1}{3 x^{2}-x}$ as a single fraction in its simplest form.
$7 \quad$ a Simplify
i $\frac{7 x+14}{4-x^{2}}$,
ii $\frac{2 x^{2}+x-28}{3 x^{2}+12 x}$.
b Hence show that the equation $\frac{7 x+14}{4-x^{2}}=\frac{2 x^{2}+x-28}{3 x^{2}+12 x}$ has no real roots.

8 The first three terms of an arithmetic series are $\frac{1}{t-2}, \frac{1}{2}$ and $\frac{4}{t^{2}-2 t}$ respectively.
a Show that $\frac{4}{t^{2}-2 t}+\frac{1}{t-2}=1$.
b Given that the common difference of the series is not zero, find the value of t and the first term of the series.

