1 The points A and B have position vectors $\left(\begin{array}{c}2 \\ -1 \\ -5\end{array}\right)$ and $\left(\begin{array}{c}0 \\ 3 \\ -4\end{array}\right)$ respectively, relative to a fixed origin.
a Find, in vector form, an equation of the line l which passes through A and B.
The line m has equation

$$
\mathbf{r}=\left(\begin{array}{c}
6 \\
-5 \\
1
\end{array}\right)+\mu\left(\begin{array}{c}
a \\
-3 \\
1
\end{array}\right)
$$

where a is a constant.
Given that lines l and m intersect,
b find the value of a and the coordinates of the point where l and m intersect.

2 Relative to a fixed origin, the points A, B and C have position vectors $(-4 \mathbf{i}+2 \mathbf{j}-\mathbf{k})$, $(2 \mathbf{i}+5 \mathbf{j}-7 \mathbf{k})$ and $(6 \mathbf{i}+4 \mathbf{j}+\mathbf{k})$ respectively.
a Show that $\cos (\angle A B C)=\frac{1}{3}$.
The point M is the mid-point of $A C$.
b Find the position vector of M.
c Show that $B M$ is perpendicular to $A C$.
d Find the size of angle $A C B$ in degrees.
3 Relative to a fixed origin O, the points A and B have position vectors $\left(\begin{array}{c}9 \\ 5 \\ -3\end{array}\right)$ and $\left(\begin{array}{c}11 \\ 7 \\ -3\end{array}\right)$ respectively.
a Find, in vector form, an equation of the line L which passes through A and B.
The point C lies on L such that $O C$ is perpendicular to L.
b Find the position vector of C.
c Find, to 3 significant figures, the area of triangle $O A C$.
d Find the exact ratio of the area of triangle $O A B$ to the area of triangle $O A C$.

4 Relative to a fixed origin O, the points A and B have position vectors $(7 \mathbf{i}-5 \mathbf{j}-\mathbf{k})$ and $(4 \mathbf{i}-5 \mathbf{j}+3 \mathbf{k})$ respectively.
a Find $\cos (\angle A O B)$, giving your answer in the form $k \sqrt{6}$, where k is an exact fraction.
b Show that $A B$ is perpendicular to $O B$.
The point C is such that $\overrightarrow{O C}=\frac{3}{2} \overrightarrow{O B}$.
c Show that $A C$ is perpendicular to $O A$.
d Find the size of $\angle A C O$ in degrees to 1 decimal place.

