C4

1	Relative to a fixed origin, the line <i>l</i> has vector equation	
	$\mathbf{r} = \mathbf{i} - 4\mathbf{j} + p\mathbf{k} + \lambda(2\mathbf{i} + q\mathbf{j} - 3\mathbf{k}),$	
	where λ is a scalar parameter.	
	Given that <i>l</i> passes through the point with position vector $(7\mathbf{i} - \mathbf{j} - \mathbf{k})$,	
	a find the values of the constants p and q ,	(3)
	b find, in degrees, the acute angle l makes with the line with equation	
	$\mathbf{r} = 3\mathbf{i} + 4\mathbf{j} - 3\mathbf{k} + \mu(-4\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}).$	(4)
2	The points <i>A</i> and <i>B</i> have position vectors $\begin{pmatrix} 1 \\ 6 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ 0 \\ -6 \end{pmatrix}$ respectively, relative to a	
	fixed origin.	
	a Find, in vector form, an equation of the line l which passes through A and B .	(2)
	The line <i>m</i> has equation	
	$\mathbf{r} = \begin{pmatrix} 5\\-5\\3 \end{pmatrix} + t \begin{pmatrix} 1\\-4\\2 \end{pmatrix}.$	
	Given that lines <i>l</i> and <i>m</i> intersect at the point <i>C</i> ,	
	b find the position vector of C ,	(5)
	c show that C is the mid-point of AB .	(2)
3	Relative to a fixed origin, the points P and Q have position vectors $(5\mathbf{i} - 2\mathbf{j} + 2\mathbf{k})$ and $(3\mathbf{i} + \mathbf{j})$ respectively.	
	a Find, in vector form, an equation of the line L_1 which passes through P and Q.	(2)
	The line L_2 has equation	
	$\mathbf{r} = 4\mathbf{i} + 6\mathbf{j} - \mathbf{k} + \mu(5\mathbf{i} - \mathbf{j} + 3\mathbf{k}).$	
	b Show that lines L_1 and L_2 intersect and find the position vector of their point of	
	Intersection.	(0) (1)
	L_1 and L_2 .	(4)
4	Relative to a fixed origin, the lines l_1 and l_2 have vector equations as follows:	
	l_1 : $\mathbf{r} = 5\mathbf{i} + \mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} + 2\mathbf{k}),$	
	l_2 : $\mathbf{r} = 7\mathbf{i} - 3\mathbf{j} + 7\mathbf{k} + \mu(-\mathbf{i} + \mathbf{j} - 2\mathbf{k}),$	
	where λ and μ are scalar parameters.	
	a Show that lines l_1 and l_2 intersect and find the position vector of their point of intersection.	(6)
	The points A and C lie on l_1 and the points B and D lie on l_2 .	
	Given that <i>ABCD</i> is a parallelogram and that <i>A</i> has position vector $(9\mathbf{i} - 2\mathbf{j} + 5\mathbf{k})$,	
	b find the position vector of <i>C</i> .	(3)
	Given also that the area of parallelogram <i>ABCD</i> is 54,	

c find the distance of the point *B* from the line l_1 .

(4)

C4 VECTORS

5	Relative to a fixed origin, the points A and B have position vectors $(4\mathbf{i} + 2\mathbf{j} - 4\mathbf{k})$ and $(2\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ respectively.	
	a Find, in vector form, an equation of the line l_1 which passes through A and B.	(2)
	The line l_2 passes through the point <i>C</i> with position vector $(4\mathbf{i} - 7\mathbf{j} - \mathbf{k})$ and is parallel to the vector $(6\mathbf{j} - 2\mathbf{k})$.	
	b Write down, in vector form, an equation of the line l_2 .	(1)
	c Show that A lies on l_2 .	(2)
	d Find, in degrees, the acute angle between lines l_1 and l_2 .	(4)
6	The points <i>A</i> and <i>B</i> have position vectors $\begin{pmatrix} 5 \\ -1 \\ -10 \end{pmatrix}$ and $\begin{pmatrix} 4 \\ 1 \\ -8 \end{pmatrix}$ respectively, relative to a	
	fixed origin O.	
	a Find, in vector form, an equation of the line <i>l</i> which passes through <i>A</i> and <i>B</i> .	(2)
	The line <i>l</i> intersects the <i>y</i> -axis at the point <i>C</i> .	
	b Find the coordinates of <i>C</i> .	(2)
	The point D on the line l is such that OD is perpendicular to l .	
	c Find the coordinates of <i>D</i> .	(5)
	d Find the area of triangle <i>OCD</i> , giving your answer in the form $k\sqrt{5}$.	(3)
7	Relative to a fixed origin, the line l_1 has the equation	
	$\mathbf{r} = \begin{pmatrix} 1 \\ -6 \\ -2 \end{pmatrix} + s \begin{pmatrix} 0 \\ 4 \\ -1 \end{pmatrix}.$	
	a Show that the point <i>P</i> with coordinates $(1, 6, -5)$ lies on l_1 .	(1)
	The line l_2 has the equation	
	$\mathbf{r} = \begin{pmatrix} 4\\ -4\\ -1 \end{pmatrix} + t \begin{pmatrix} 3\\ -2\\ 2 \end{pmatrix},$	
	and intersects l_1 at the point Q .	
	b Find the position vector of Q .	(3)
	The point R lies on l_2 such that $PQ = QR$.	
	c Find the two possible position vectors of the point R .	(5)
8	Relative to a fixed origin, the points A and B have position vectors $(4\mathbf{i} + 5\mathbf{j} + 6\mathbf{k})$ and $(4\mathbf{i} + 6\mathbf{j} + 2\mathbf{k})$ respectively.	
	a Find, in vector form, an equation of the line l_1 which passes through A and B.	(2)
	The line l_2 has equation	
	$\mathbf{r} = \mathbf{i} + 5\mathbf{j} - 3\mathbf{k} + \mu(\mathbf{i} + \mathbf{j} - \mathbf{k}).$	
	b Show that l_1 and l_2 intersect and find the position vector of their point of intersection.	(4)
	c Find the acute angle between lines l_1 and l_2 .	(3)

d Show that the point on l_2 closest to A has position vector $(-\mathbf{i} + 3\mathbf{j} - \mathbf{k})$. (5)