1 Relative to a fixed origin, the line l has vector equation

$$
\mathbf{r}=\mathbf{i}-4 \mathbf{j}+p \mathbf{k}+\lambda(2 \mathbf{i}+q \mathbf{j}-3 \mathbf{k})
$$

where λ is a scalar parameter.
Given that l passes through the point with position vector $(7 \mathbf{i}-\mathbf{j}-\mathbf{k})$,
a find the values of the constants p and q,
b find, in degrees, the acute angle l makes with the line with equation

$$
\begin{equation*}
\mathbf{r}=3 \mathbf{i}+4 \mathbf{j}-3 \mathbf{k}+\mu(-4 \mathbf{i}+5 \mathbf{j}-2 \mathbf{k}) \tag{4}
\end{equation*}
$$

2 The points A and B have position vectors $\left(\begin{array}{l}1 \\ 6 \\ 4\end{array}\right)$ and $\left(\begin{array}{c}5 \\ 0 \\ -6\end{array}\right)$ respectively, relative to a fixed origin.
a Find, in vector form, an equation of the line l which passes through A and B.
The line m has equation

$$
\mathbf{r}=\left(\begin{array}{c}
5 \\
-5 \\
3
\end{array}\right)+t\left(\begin{array}{c}
1 \\
-4 \\
2
\end{array}\right)
$$

Given that lines l and m intersect at the point C,
b find the position vector of C,
c show that C is the mid-point of $A B$.
3 Relative to a fixed origin, the points P and Q have position vectors ($5 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$) and ($3 \mathbf{i}+\mathbf{j}$) respectively.
a Find, in vector form, an equation of the line L_{1} which passes through P and Q.
The line L_{2} has equation

$$
\mathbf{r}=4 \mathbf{i}+6 \mathbf{j}-\mathbf{k}+\mu(5 \mathbf{i}-\mathbf{j}+3 \mathbf{k})
$$

b Show that lines L_{1} and L_{2} intersect and find the position vector of their point of intersection.
c Find, in degrees to 1 decimal place, the acute angle between lines L_{1} and L_{2}.
4 Relative to a fixed origin, the lines l_{1} and l_{2} have vector equations as follows:

$$
\begin{array}{ll}
l_{1}: & \mathbf{r}=5 \mathbf{i}+\mathbf{k}+\lambda(2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}), \\
l_{2}: & \mathbf{r}=7 \mathbf{i}-3 \mathbf{j}+7 \mathbf{k}+\mu(-\mathbf{i}+\mathbf{j}-2 \mathbf{k}),
\end{array}
$$

where λ and μ are scalar parameters.
a Show that lines l_{1} and l_{2} intersect and find the position vector of their point of intersection.
The points A and C lie on l_{1} and the points B and D lie on l_{2}.
Given that $A B C D$ is a parallelogram and that A has position vector $(9 \mathbf{i}-2 \mathbf{j}+5 \mathbf{k})$,
b find the position vector of C.
Given also that the area of parallelogram $A B C D$ is 54 ,
c find the distance of the point B from the line l_{1}.

5 Relative to a fixed origin, the points A and B have position vectors ($4 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$) and ($2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$) respectively.
a Find, in vector form, an equation of the line l_{1} which passes through A and B.
The line l_{2} passes through the point C with position vector $(4 \mathbf{i}-7 \mathbf{j}-\mathbf{k})$ and is parallel to the vector $(6 \mathbf{j}-2 \mathbf{k})$.
b Write down, in vector form, an equation of the line l_{2}.
c Show that A lies on l_{2}.
d Find, in degrees, the acute angle between lines l_{1} and l_{2}.
6 The points A and B have position vectors $\left(\begin{array}{c}5 \\ -1 \\ -10\end{array}\right)$ and $\left(\begin{array}{c}4 \\ 1 \\ -8\end{array}\right)$ respectively, relative to a fixed origin O.
a Find, in vector form, an equation of the line l which passes through A and B.
The line l intersects the y-axis at the point C.
b Find the coordinates of C.
The point D on the line l is such that $O D$ is perpendicular to l.
c Find the coordinates of D.
d Find the area of triangle $O C D$, giving your answer in the form $k \sqrt{5}$.
7 Relative to a fixed origin, the line l_{1} has the equation

$$
\mathbf{r}=\left(\begin{array}{c}
1 \\
-6 \\
-2
\end{array}\right)+s\left(\begin{array}{c}
0 \\
4 \\
-1
\end{array}\right) .
$$

a Show that the point P with coordinates $(1,6,-5)$ lies on l_{1}.
The line l_{2} has the equation

$$
\mathbf{r}=\left(\begin{array}{c}
4 \\
-4 \\
-1
\end{array}\right)+t\left(\begin{array}{c}
3 \\
-2 \\
2
\end{array}\right),
$$

and intersects l_{1} at the point Q.
b Find the position vector of Q.
The point R lies on l_{2} such that $P Q=Q R$.
c Find the two possible position vectors of the point R.
8 Relative to a fixed origin, the points A and B have position vectors ($4 \mathbf{i}+5 \mathbf{j}+6 \mathbf{k}$) and $(4 \mathbf{i}+6 \mathbf{j}+2 \mathbf{k})$ respectively.
a Find, in vector form, an equation of the line l_{1} which passes through A and B.
The line l_{2} has equation

$$
\mathbf{r}=\mathbf{i}+5 \mathbf{j}-3 \mathbf{k}+\mu(\mathbf{i}+\mathbf{j}-\mathbf{k})
$$

b Show that l_{1} and l_{2} intersect and find the position vector of their point of intersection.
c Find the acute angle between lines l_{1} and l_{2}.
d Show that the point on l_{2} closest to A has position vector $(-\mathbf{i}+3 \mathbf{j}-\mathbf{k})$.

