C1 Graphs of Functions

1 a Solve the simultaneous equations

$$
\begin{align*}
& y=3 x-4 \\
& y=4 x^{2}-9 x+5 \tag{4}
\end{align*}
$$

b Hence, describe the geometrical relationship between the straight line $y=3 x-4$ and the curve $y=4 x^{2}-9 x+5$.

2

The diagram shows the graph of $y=\mathrm{f}(x)$ which is defined for $-2 \leq x \leq 2$.
Labelling the axes in a similar way, sketch on separate diagrams the graphs of
a $y=3 \mathrm{f}(x)$,
b $y=\mathrm{f}(x+1)$,
c $y=\mathrm{f}(-x)$.
3 a Show that the line $y=4 x+1$ does not intersect the curve $y=x^{2}+5 x+2$.
b Find the values of m such that the line $y=m x+1$ meets the curve $y=x^{2}+5 x+2$ at exactly one point.

4

The diagram shows the curve with the equation $y=\mathrm{f}(x)$ where

$$
\begin{equation*}
\mathrm{f}(x) \equiv \sqrt{x}, x \geq 0 \tag{4}
\end{equation*}
$$

a Sketch on the same set of axes the graphs of $y=1+\mathrm{f}(x)$ and $y=\mathrm{f}(x+3)$.
b Find the coordinates of the point of intersection of the two graphs drawn in part \mathbf{a}.
5 The curve C has the equation $y=x^{2}+k x-3$ and the line l has the equation $y=k-x$, where k is a constant.
Prove that for all real values of k, the line l will intersect the curve C at exactly two points.

6

$$
\begin{equation*}
\mathrm{f}(x) \equiv 2 x^{2}-4 x+5 \tag{7}
\end{equation*}
$$

a Express $\mathrm{f}(x)$ in the form $a(x+b)^{2}+c$.
b Showing the coordinates of the turning point in each case, sketch on the same set of axes the curves
i $y=\mathrm{f}(x)$,
ii $y=\mathrm{f}(x+3)$.

7 a Sketch on the same diagram the straight line $y=2 x-5$ and the curve $y=x^{3}-3 x^{2}$, showing the coordinates of any points where each graph meets the coordinate axes.
b Hence, state the number of real roots that exist for the equation

$$
\begin{equation*}
x^{3}-3 x^{2}-2 x+5=0 \tag{2}
\end{equation*}
$$

giving a reason for your answer.
8

The diagram shows the curve with the equation $y=a x^{2}+b x+c$.
Given that the curve crosses the y-axis at the point $(0,-6)$ and touches the x-axis at the point $(2,0)$, find the values of the constants a, b and c.

9 a Show that

$$
\begin{equation*}
(1-x)(2+x)^{2} \equiv 4-3 x^{2}-x^{3} . \tag{3}
\end{equation*}
$$

b Hence, sketch the curve $y=4-3 x^{2}-x^{3}$, showing the coordinates of any points of intersection with the coordinate axes.

10

The diagram shows the curve with equation $y=\mathrm{f}(x)$ which crosses the coordinate axes at the points $(-5,0),(1,0)$ and $(0,-3)$.
Showing the coordinates of any points of intersection with the axes, sketch on separate diagrams the curves
a $y=-\mathrm{f}(x)$,
b $y=\mathrm{f}(x-5)$,
c $y=\mathrm{f}(2 x)$.
11 a Describe fully the transformation that maps the graph of $y=\mathrm{f}(x)$ onto the graph of $y=\mathrm{f}(x+1)$.
b Sketch the graph of $y=\frac{1}{x+1}$, showing the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes.
c By sketching another suitable curve on your diagram in part \mathbf{b}, show that the equation

$$
x^{3}-\frac{1}{x+1}=2
$$

has one positive and one negative real root.

