C2 Exponentials and Logarithms

1 Given that $a=\log _{10} 2$ and $b=\log _{10} 3$, find expressions in terms of a and b for
a $\log _{10} 1.5$,
b $\log _{10} 24$,
c $\log _{10} 150$.
2 Find, to an appropriate degree of accuracy, the values of x for which
a $4 \log _{3} x-5=0$,
b $\log _{3} x^{3}-5 \log _{3} x=4$.
3 a Given that $p=\log _{2} q$, find expressions in terms of p for

$$
\begin{array}{ll}
\text { i } & \log _{2} \sqrt{q} \\
\text { ii } & \log _{2} 8 q \tag{4}
\end{array}
$$

b Solve the equation

$$
\begin{equation*}
\log _{2} 8 q-\log _{2} \sqrt{q}=\log _{3} 9 \tag{3}
\end{equation*}
$$

4 An initial investment of $£ 1000$ is placed into a savings account that offers 2.2% interest every 3 months. The amount of money in the account, $£ P$, at the end of t years is given by

$$
P=1000 \times 1.022^{4 t}
$$

Find, to the nearest year, how long it will take for the investment to double in value.
5

The diagram shows the curve with equation $y=\left(\frac{1}{3}\right)^{x}-4$.
a Write down the coordinates of the point where the curve crosses the y-axis.
The curve has an asymptote with equation $y=k$.
b Write down the value of the constant k.
c Find the x-coordinate of the point where the curve crosses the x-axis.
6 a Solve the equation

$$
\begin{equation*}
\log _{3}(x+1)-\log _{3}(x-2)=1 \tag{3}
\end{equation*}
$$

b Find, in terms of logarithms to the base 10 , the exact value of x such that

$$
\begin{equation*}
3^{2 x+1}=2^{x-4} \tag{3}
\end{equation*}
$$

7 a Given that $t=2^{x}$, write down expressions in terms of t for
$\begin{array}{ll}\text { i } & 2^{x-1}, \\ \text { ii } & 2^{2 x+1} .\end{array}$
b Hence solve the equation

$$
\begin{equation*}
2^{2 x+1}-14\left(2^{x-1}\right)+6=0 \tag{5}
\end{equation*}
$$

8 Find the values of x for which
a $\log _{2}(3 x+5)+\log _{5} 125=7$,
b $\log _{2}(x+1)=5-\log _{2}(3 x-1)$.
$9 \quad$ Given that $\quad \log _{a}(x+4)=\log _{a} \frac{x}{4}+\log _{a} 5$,
and that $\quad \log _{a}(y+2)=\log _{a} 12-\log _{a}(y+1)$,
where $y>0$, find
a the value of x,
b the value of y,
c the value of the logarithm of x to the base y.
10 A colony of fast-breeding fish is introduced into a large, newly-built pond. The number of fish in the pond, n, after t weeks is modelled by

$$
n=\frac{18000}{1+8 c^{-t}}
$$

a Find the initial number of fish in the pond.
Given that there are 3600 fish in the pond after 3 weeks, use this model to
b show that $c=\sqrt[3]{2}$,
c find the time taken for the initial population of fish to double in size, giving your answer to the nearest day.

11 a Given that $y=\log _{8} x$, find expressions in terms of y for
i $\log _{8} x^{2}$,
ii $\log _{2} x$.
b Hence, or otherwise, find the value of x such that

$$
\begin{equation*}
3 \log _{8} x^{2}+\log _{2} x=6 \tag{3}
\end{equation*}
$$

12 Solve the simultaneous equations

$$
\begin{align*}
& \log _{2} y=\log _{2}(3-2 x)+1 \\
& \log _{4} x+\log _{4} y=\frac{1}{2} \tag{8}
\end{align*}
$$

13 a Sketch on the same diagram the curves $y=2^{x}+1$ and $y=\left(\frac{1}{2}\right)^{x}$, showing the coordinates of any points where each curve meets the coordinate axes.

Given that the curves $y=2^{x}+1$ and $y=\left(\frac{1}{2}\right)^{x}$ intersect at the point A,
b show that the x-coordinate of A is a solution of the equation

$$
\begin{equation*}
2^{2 x}+2^{x}-1=0 \tag{2}
\end{equation*}
$$

c hence, show that the y-coordinate of A is $\frac{1}{2}(\sqrt{5}+1)$.
14 a Show that $x=1$ is a solution of the equation

$$
\begin{equation*}
2^{3 x}-4\left(2^{2 x}\right)+2^{x}+6=0 \tag{1}
\end{equation*}
$$

b Show that using the substitution $u=2^{x}$, equation (I) can be written as

$$
\begin{equation*}
u^{3}-4 u^{2}+u+6=0 \tag{2}
\end{equation*}
$$

c Hence find the other real solution of equation (I) correct to 3 significant figures.

