EXPONENTIALS AND LOGARITHMS

1	Given that $a = \log_{10} 2$ and $b = \log_{10} 3$, find expressions in terms of a and b for	
	a $\log_{10} 1.5$,	(2)
	b $\log_{10} 24$,	(2)
	c $\log_{10} 150.$	(3)
2	Find, to an appropriate degree of accuracy, the values of x for which	
	a $4 \log_3 x - 5 = 0$,	(2)
	b $\log_3 x^3 - 5 \log_3 x = 4.$	(3)
3	a Given that $p = \log_2 q$, find expressions in terms of p for	
	$i \log_2 \sqrt{q}$,	
	ii $\log_2 8q$.	(4)
	b Solve the equation	
	$\log_2 8q - \log_2 \sqrt{q} = \log_3 9.$	(3)
4	An initial investment of £1000 is placed into a savings account that offers 2.2% interest every 3 months. The amount of money in the account, £ <i>P</i> , at the end of <i>t</i> years is given by $P = 1000 \times 1.022^{4t}$	
	Find, to the nearest year, how long it will take for the investment to double in value.	(4)
5	$y = \left(\frac{1}{3}\right)^{x} - 4$ $y = k$ $y = k$	
	The diagram shows the curve with equation $y = (\frac{1}{3})^x - 4$.	
	a Write down the coordinates of the point where the curve crosses the <i>y</i> -axis.	(1)
	The curve has an asymptote with equation $y = k$.	
	b Write down the value of the constant k .	(1)
	c Find the <i>x</i> -coordinate of the point where the curve crosses the <i>x</i> -axis.	(3)

6 a Solve the equation

C2

$$\log_3 (x+1) - \log_3 (x-2) = 1.$$
(3)

b Find, in terms of logarithms to the base 10, the exact value of x such that $3^{2x+1} = 2^{x-4}$. (3)

7 **a** Given that $t = 2^x$, write down expressions in terms of t for

i
$$2^{x-1}$$
,
ii 2^{2x+1} . (3)

b Hence solve the equation

$$2^{2x+1} - 14(2^{x-1}) + 6 = 0.$$
 (5)

8	Find the values of x for which a $\log_2(3x+5) + \log_5 125 = 7$, b $\log_2((x+1)) = 5$, $\log_2(2x-1)$	(3)
	b $\log_2(x+1) = 5 - \log_2(3x-1).$	(5)
9	Given that $\log_a (x+4) = \log_a \frac{x}{4} + \log_a 5$,	
	and that $\log_a (y+2) = \log_a 12 - \log_a (y+1)$,	
	where $y > 0$, find	
	a the value of x ,	(3)
	b the value of y ,	(4)
	c the value of the logarithm of x to the base y .	(2)
10	A colony of fast-breeding fish is introduced into a large, newly-built pond. The number of fish in the pond, n , after t weeks is modelled by	
	$n = \frac{18000}{1+8c^{-t}}$.	
	a Find the initial number of fish in the pond.	(2)
	Given that there are 3600 fish in the pond after 3 weeks, use this model to	()
	b show that $c = \sqrt[3]{2}$,	(3)
	c find the time taken for the initial population of fish to double in size, giving your answer to the nearest day.	(4)
11	a Given that $y = \log_8 x$, find expressions in terms of y for	
	i $\log_8 x^2$,	
	ii $\log_2 x$.	(4)
	b Hence, or otherwise, find the value of x such that	
	$3\log_8 x^2 + \log_2 x = 6.$	(3)
12	Solve the simultaneous equations	
	$\log_2 y = \log_2 (3 - 2x) + 1$	
	$\log_4 x + \log_4 y = \frac{1}{2}$	(8)
13	a Sketch on the same diagram the curves $y = 2^x + 1$ and $y = (\frac{1}{2})^x$, showing the	
10	coordinates of any points where each curve meets the coordinate axes.	(4)
	Given that the curves $y = 2^{x} + 1$ and $y = (\frac{1}{2})^{x}$ intersect at the point A,	()
	b show that the <i>x</i> -coordinate of A is a solution of the equation	
	$2^{2x} + 2^x - 1 = 0.$	(2)
	c hence, show that the y-coordinate of A is $\frac{1}{2}(\sqrt{5} + 1)$.	(4)
		()
14	a Show that $x = 1$ is a solution of the equation	
	$2^{3x} - 4(2^{2x}) + 2^x + 6 = 0.$ (I)	(1)
	b Show that using the substitution $u = 2^x$, equation (I) can be written as	
	$u^{3} - 4u^{2} + u + 6 = 0.$	(2)
	c Hence find the other real solution of equation (I) correct to 3 significant figures.	(7)