Exam Review

Functions and Equations (Markscheme)

1. (a)

Note: Award M1 for evidence of reflection in x-axis, Al for correct vertex and all intercepts approximately correct.
(b)
(i) $\begin{aligned} & g(-3)=f(0) \\ & f(0)=-1.5\end{aligned}$
(ii) translation (accept shift, slide, etc.) of $\binom{-3}{0}$
2. (a) evidence of attempting to solve $f(x)=0$
evidence of correct working
eg $(x+1)(x-2), \frac{1 \pm \sqrt{9}}{2}$
intercepts are $(-1,0)$ and $(2,0)$ (accept $x=-1, x=2)$
(b) evidence of appropriate method
eg $x_{v}=\frac{x_{1}+x_{2}}{2}, x_{v}=-\frac{b}{2 a}$, reference to symmetry
$x_{v}=0.5$
3. (a) METHOD 1
$\ln (x+5)+\ln 2=\ln (2(x+5))(=\ln (2 x+10))$
interchanging x and y (seen anywhere)
(M1)
eg $x=\ln (2 y+10)$
evidence of correct manipulation
eg $\mathrm{e}^{x}=2 y+10$
$f^{-1}(x)=\frac{e^{x}-10}{2}$
A1 N2

METHOD 2

$y=\ln (x+5)+\ln 2$
$y-\ln 2=\ln (x+5)$
evidence of correct manipulation
(Al)
(Al)
eg $\mathrm{e}^{y-\ln 2}=x+5$
interchanging x and y (seen anywhere)
eg $\mathrm{e}^{x-\ln 2}=y+5$
(M1)
A1

AlA1 NiN1
(M1)

A1 N 2
2
[6]
5. (a)
$1=A_{0} \mathrm{e}^{5 k}$
A1
Attempt to find $\frac{\mathrm{d} A}{\mathrm{~d} t}$
eg $\frac{\mathrm{d} A}{\mathrm{~d} t}=k A_{0} e^{k t}$
Correct equation $0.2=k A_{0} \mathrm{e}^{5 k}$
For any valid attempt to solve the system of equations
M1
eg $\frac{0.2}{1}=\frac{k A_{0} \mathrm{e}^{5 k}}{A_{0} \mathrm{e}^{5 k}}$

$$
\begin{array}{rlr}
k & =0.2 \mathrm{AG} & \text { N0 } \\
\text { (b) } \quad 100 & =\frac{1}{\mathrm{e}} \mathrm{e}^{0.2 \mathrm{t}} & \text { A1 }
\end{array}
$$

$$
t=\frac{\ln 100+1}{0.2}(=28.0)
$$

(ii) $f(1)=0$
(b)

Note: $\quad \begin{aligned} & \text { Award Al for approximate reflection of } \\ & \text { fin } y=x, \text { Al for } y \text { intercept tat } 1 \text { and and } \\ & \text { Al for curve asymptotic to x axis. }\end{aligned}$
7. (a)

$$
\begin{aligned}
& \text { eg } y^{2}+y-12=(y+4)(y-3),\left(2^{x}\right)^{2}+\left(2^{x}\right)-12=\left(2^{x}+4\right)\left(2^{x}-3\right) \\
& a=4, b=-3(\text { or } a=-3, b=4)
\end{aligned}
$$

(b)
$2^{x}-3=0$
$x=\frac{\ln 3}{\ln 2}\left(\log _{2} 3, \frac{\log 3}{\log 2}\right.$ etc. $)$

EITHER

Considering $2^{x}+4=0\left(2^{x}=-4\right)$ (may be seen earlier)

Valid reason
eg this equation has no real solution, $2^{x}>0$, graph does not cross the x-axis
OR
Considering graph of $y=2^{2 x}+2^{x}-12$ (asymptote does not need to
be indicated)

There is only one point of intersection of the graph with x-axis
[6]
8. (a)

Note: Award Al for the shape of the curve
Al for correct domain,
Al for labelling both points P and Q in approximately correct position.
(i)

> Correctly finding derivative of $2 x+1$ ie 2
> Correctly finding derivative of e^{-x} ie $-\mathrm{e}^{-x}$ Evidence of using the product rule $f^{\prime}(x)=2 \mathrm{e}^{-x}+(2 x+1)\left(-\mathrm{e}^{-x}\right)$

$$
=(1-2 x) e^{-x}
$$

(ii) At $\mathbf{Q}, f^{\prime}(x)=0$

$$
x=0.5, y=2 \mathrm{e}^{-0.5}
$$

\mathbf{Q} is $\left(0.5,2 \mathrm{e}^{-0.5}\right)$
(c) $1 \leq k<2 \mathrm{e}^{-0.5}$
(d) Using $f^{\prime \prime}(x)=0$ at the point of inflexion

$$
\mathrm{e}^{-x}(-3+2 x)=0
$$

This equation has only one root
So f has only one point of inflexion.
(e) At R, $y=7 \mathrm{e}^{-3}(=0.34850 \ldots)$

Gradient of (PR) is $\frac{7 \mathrm{e}^{-3}-1}{3}(=-0.2172)$
Equation of (PR) is $g(x)=\left(\frac{7 \mathrm{e}^{-3}-1}{3}\right) x+1(=-0.2172 x+1)$ A1

Evidence of appropriate method, involving subtraction of integral ${ }_{\text {or areas }}$
eg $\int_{0}^{3}(f(x)-g(x)) \mathrm{d} x$, area under curve - area under PR
Shaded area is $\int_{0}^{3}\left((2 x+1) \mathrm{e}^{-\mathrm{x}}-\left(\frac{7 \mathrm{e}^{-3}-1}{3} x+1\right)\right) \mathrm{d} x$

$$
=0.529
$$

For attempting to complete the square or expanding $y=2(x-c)^{2}+d$ or for showing the vertex is at $(3,5)$
(b) (i) $k=2$
(ii) $\quad p=3$
(iii) $q=5$
10.
) $\mathrm{e}^{\ln (x+2)}=\mathrm{e}^{3}$
$x+2=\mathrm{e}^{3}$

$$
x=\mathrm{e}^{3}-2(=18.1)
$$

A1 N1
N1
N 1
(M1)
$2 x=\log _{10} 500$
$x=\frac{1}{2} \log _{10} 500 \quad\left(=\frac{\log 500}{\log 100}=1.35\right)$
A1 N3
Note: In both parts (a) and (b), if candidates use a graphical approach, award $\mathbf{M 1}$ for a sketch, Al for indicating appropriate points of intersection, and Al for the answer.

(A1)(Al)(Al)(A1) (N4)
Note: Award (Al) for both asymptotes correctly drawn, (Al) for both
intercepts correctly marked, (A1)(Al) for each branch drawn
in approximately correct positions. Asymptotes and intercepts need not be labelled.
(d) There is a vertical translation of 8 units.
(accept translation of $\binom{0}{8}$)
(A2) (N2)
(a) (i) $x=10$
(ii) $y=8$
(b) (i) $6.4($ or $(0,6.4))$ (ii) $8(\operatorname{or}(8,0))$
(A1) (N1)
(A1) (N1)
(A1) (N1)
(Al) (N1)
(c)

