Exam Review

M1A1 N2

(A1) A1 N2

(M1)

Al

A1A1 N1N1

A1 N2

A1 N2

(M1)

(A1) (M1)

(A1)

(A1)

(A1)

(M1)

A1A1 N2

[6]

[6]

1

1. (a)

Note:	Award M1 for evidence of reflection in
	x-axis, A1 for correct vertex and all
	intercepts approximately correct.

(b) (i)
$$g(-3) = f(0)$$

 $f(0) = -1.5$
(ii) translation (accept shift, slide, *etc.*) of $\begin{pmatrix} -3\\ 0 \end{pmatrix}$

2. (a) evidence of attempting to solve f(x) = 0 evidence of correct working

$$eg(x+1)(x-2), \frac{1\pm\sqrt{9}}{2}$$

intercepts are (-1, 0) and (2, 0) (accept x = -1, x = 2)

(b) evidence of appropriate method

eg
$$x_v = \frac{x_1 + x_2}{2}$$
, $x_v = -\frac{b}{2a}$, reference to symmetry
 $x_v = 0.5$

3. (a) METHOD 1

In $(x + 5) + \ln 2 = \ln (2(x + 5)) (= \ln (2x + 10))$ interchanging x and y (seen anywhere) $eg x = \ln (2y + 10)$ evidence of correct manipulation $eg e^{x} = 2y + 10$ $f^{-1}(x) = \frac{e^{x} - 10}{2}$ **METHOD 2** $y = \ln (x + 5) + \ln 2$ $y - \ln 2 = \ln (x + 5)$ evidence of correct manipulation $eg e^{y} - \ln 2 = x + 5$ interchanging x and y (seen anywhere) $eg e^{x - \ln 2} = y + 5$

	$f^{-1}(x)$	$e^{x} = e^{x - \ln 2} - 5$	A1	N2
(b)	MET	HOD 1		
		nce of composition in correct order	(M1)	
		$f(x) = g(\ln(x+5) + \ln 2)$		
	= e ^{ln (}	(2(x+5)) = 2(x+5)		
	(g ∘ <i>f</i>)	(x) = 2x + 10	A1A1	N2
		HOD 2		
	evider	the of composition in correct order $\ln(x + 5) + \ln 2$	(M1)	
	eg(g)	$f(x) = e^{\ln(x+5)} + \ln 2$ $f(x+5) \times e^{\ln 2} = (x+5) 2$		
	_ e (g ∘ f)	(x) = 2x + 10	A1A1	N2
(a)	MET	HOD 1		
(a)		the discriminant $\Delta = 0$	(M1)	
		×4×1	(111)	
		k = - 4 HOD 2	A1A1	N3
	Factor		(M1)	
	$(2x \pm$	-	(111)	
		1) $k = -4$	A1A1	N3
				18.5
(b)		nce of using $\cos 2\theta = 2\cos^2 \theta - 1$	M1	
		$2\cos^2\theta - 1) + 4\cos\theta + 3$		
	$f(\theta) =$	$4\cos^2\theta + 4\cos\theta + 1$	AG	N0
(c)	(i)	1	A1	N1
	(ii)	METHOD 1		
		Attempting to solve for $\cos \theta$	M1	
		$\cos \theta = -\frac{1}{2}$	(A1)	
		$\theta = 240, 120, -240, -120$ (correct four values only)	A2	N3
		METHOD 2	112	115
		Sketch of $y = 4\cos^2\theta + 4\cos\theta + 1$	M1	
		^y † o		
			/	
			/	
	_3		360	\overrightarrow{x}
	5	100	200	
		Indicating 4 zeros	(A1)	
		$\theta = 240, 120, -240, -120$ (correct four values only)	A2	N3
	II.		<u></u>	

4.

(d)

Using sketch

c = 9

[7]

[11]

(M1)

A1 N2

5. (a)
$$1 = A_0 e^{5k}$$

Attempt to find
$$\frac{\mathrm{d}A}{\mathrm{d}t}$$

$$eg \frac{\mathrm{d}A}{\mathrm{d}t} = k A_0 e^{kt}$$

Correct equation $0.2 = k A_0 e^{5k}$

For any valid attempt to solve the system of equations

$$eg \ \frac{0.2}{1} = \frac{k A_0 e^{5k}}{A_0 e^{5k}}$$

$$k = 0.2 \text{ AG}$$

(b)
$$100 = \frac{1}{e}e^{0.2t}$$

$$t = \frac{\ln 100 + 1}{0.2} \ (= 28.0)$$

6. (a) (i)
$$f(a) = 1$$

(ii)
$$f(1) = 0$$

(iii) $f(a^4) = 4$

Note: Award A1 for approximate reflection of f in y = x, A1 for y intercept at 1, and A1 for curve asymptotic to x axis.

7. (a) Two correct factors

- $eg y^{2} + y 12 = (y + 4)(y 3), (2^{x})^{2} + (2^{x}) 12 = (2^{x} + 4)(2^{x} 3)$ a = 4, b = -3 (or a = -3, b = 4)
- (b) $2^x 3 = 0$

$$2^{x} = 3$$
$$x = \frac{\ln 3}{\ln 2} \left(\log_2 3, \frac{\log 3}{\log 2} etc. \right)$$

EITHER

Considering $2^{x} + 4 = 0$ ($2^{x} = -4$) (may be seen earlier)

A1

M1

N0

A1

A1 N1

A1 N1

A1 N1

A1 N1

[6]

eg this equation has no real solution, $2^X > 0$, graph does not cross the x-axis

OR

8.

Considering graph of
$$y = 2^{2x} + 2^x - 12$$
 (asymptote does not need to be indicated)

R1 N1

A1A1A1 N3

Note:

There is only one point of intersection of the graph with x-axis.

Award A1 for the shape of the curve, A1 for correct domain, A1 for labelling **both** points P and Q in approximately correct positions.

(b)	(i)	Correctly finding derivative of $2x + 1$ ie 2	(A1)	
		Correctly finding derivative of e^{-x} <i>ie</i> $-e^{-x}$ Evidence of using the product rule	(A1) (M1)	
		$f'(x) = 2e^{-x} + (2x + 1)(-e^{-x})$	A1	
		$= (1 - 2x)e^{-x}$	AG	N0
	(ii)	At $\mathbf{Q}, f'(x) = 0$	(M1)	
		$x = 0.5, y = 2e^{-0.5}$	A1A1	
		\mathbf{Q} is (0.5, 2e ^{-0.5})		N3
(c)	$1 \le k$	< 2e ^{-0.5}	A2	N2
(d)	Using	f''(x) = 0 at the point of inflexion	M1	
	e^{-x} (-	3+2x)=0		
	This e So f h	R1 AG	N0	
(e)	At R, $y = 7e^{-3} (= 0.34850)$ (A1)			

A1A1

A1 N2

A1A1A1 N3

N2

(M1)

A1

3

[6]

[6]

4

R1 N1

A1

Gradient of (PR) is
$$\frac{7e^{-3}-1}{3} (=-0.2172)$$

(A1)

A1

M2

A1

A1 N4

N2

A1 N1

M1

A1A1

A1 N1

A1 N1

(M1) (A1)

A1 N3

(M1)

(A1)

A1 N3

[21]

[6]

[6]

Equation of (PR) is
$$g(x) = \left(\frac{7e^{-3}-1}{3}\right)x + 1(=-0.2172x + 1)$$

Evidence of appropriate method, involving subtraction of integrals or areas Correct limits/endpoints

conteet inints/enupe

9.

 $eg \int_0^3 (f(x) - g(x)) dx$, area under curve – area under PR

Shaded area is
$$\int_0^3 \left((2x+1)e^{-x} - \left(\frac{7e^{-3}-1}{3}x+1 \right) \right) dx$$

= 0.529

(a) For attempting to complete the square or expanding
$$y = 2(x-c)^2 + d$$
, or for showing the vertex is at (3, 5)

$$y = 2(x-3)^2 + 5$$
 (accept $c = 3, d = 5$)

(b) (i)
$$k = 2$$

(ii) $p = 3$
(iii) $q = 5$
10. (a) $e^{\ln(x+2)} = e^3$
 $x + 2 = e^3$
 $x = e^3 - 2 (= 18.1)$
(b) $\log_{10} (10^{2x}) = \log_{10} 500$ (accept lg and log for \log_{10})
 $2x = \log_{10} 500$

 $x = \frac{1}{2} \log_{10} 500 \qquad \left(= \frac{\log 500}{\log 100} = 1.35 \right)$

Note: In both parts (a) and (b), if candidates use a graphical approach, award MI for a sketch, AI for indicating appropriate points of intersection, and AI for the answer.

11.	(a)	(i) (ii)	x =10 y = 8	(A1) (A1)	(N1) (N1)
	(b)	(i)	6.4 (or (0, 6.4))	(A1)	(N1)
		(ii)	8 (or (8, 0))	(A1)	(N1)

(c)

