Math 6 SL

1. (a)

Note: Award Al for vertical line to right of mean, Al for shading to right of their vertical line.
(b) evidence of recognizing symmetry
e.g. 105 is one standard deviation above the mean so d is one standard deviation below the mean, shading the corresponding part, $105-100=100-d$
$d=95$
A1 N2
(c) evidence of using complement
e.g. $1-0.32,1-p$
$\mathrm{P}(d<X<105)=0.68$
A1 N2
2. (a) (i) valid approach
e.g. $n p, 5 \times \frac{1}{5}$
$\mathrm{E}(X)=1$
A1 N 2
(ii) evidence of appropriate approach involving binomial
e.g. $X \sim \mathrm{~B}\left(5, \frac{1}{5}\right)$
recognizing that Mark needs to answer 3 or more questions correctly e.g. $\mathrm{P}(X \geq 3)$
valid approach
e.g. $1-\mathrm{P}(X \leq 2), \mathrm{P}(X=3)+\mathrm{P}(X=4)+\mathrm{P}(X=5)$
$\mathrm{P}($ pass $)=0.0579$
(b) (i) evidence of summing probabilities to 1
e.g. $0.67+0.05+(a+2 b)+\ldots+0.04=1$
some simplification that clearly leads to required answer
e.g. $0.76+4 a+2 b=1$

A1
$4 a+2 b=0.24$
(ii) correct substitution into the formula for expected value e.g. $0(0.67)+1(0.05)+\ldots+5(0.04)$
some simplification
e.g. $0.05+2 a+4 b+\ldots+5(0.04)=1$
correct equation
e.g. $13 a+5 b=0.75$
evidence of solving
$a=0.05, b=0.02$
(c) attempt to find probability Bill passes
e.g. $\mathrm{P}(Y \geq 3)$
correct value 0.19
A1
Bill (is more likely to pass)
A1 N0
3. (a) $\mathrm{E}(X)=2$

A1 N1
(b) evidence of appropriate approach involving binomial
e.g. $\binom{10}{3}(0.2)^{3},(0.2)^{3}(0.8)^{7}, X \sim \mathrm{~B}(10,0.2)$
$\mathrm{P}(X=3)=0.201$
A1 N 2
(c) METHOD 1
$\mathrm{P}(X \leq 3)=0.10737+0.26844+0.30199+0.20133(=0.87912 \ldots)$
evidence of using the complement (seen anywhere)
e.g. 1 - any probability, $\mathrm{P}(X>3)=1-\mathrm{P}(X \leq 3)$
$\mathrm{P}(X>3)=0.121$
A1 N 2

METHOD 2

recognizing that $\mathrm{P}(X>3)=\mathrm{P}(X \geq 4)$
(M1)
e.g. summing probabilities from $X=4$ to $X=10$
correct expression or values
e.g. $\sum_{r=4}^{10}\binom{10}{r}(0.2)^{10-r}(0.8)^{r}$
$0.08808+0.02642+0.005505+0.000786+0.0000737+0.000004+0.0000001$
$\mathrm{P}(X>3)=0.121$
A1 N 2
4. (a) evidence of approach
e.g. finding $0.84 \ldots$, using $\frac{23.7-21}{\sigma}$
correct working
e.g. $0.84 \ldots=\frac{23.7-21}{\sigma}$, graph
$\sigma=3.21$
A1 N2
(b) (i) evidence of attempting to find $\mathrm{P}(X<25.4)$
e.g. using $z=1.37$
$\mathrm{P}(X<25.4)=0.915$
A1 N2
(ii) evidence of recognizing symmetry
e.g. $b=21-4.4$, using $z=-1.37$

$$
b=16.6
$$

5. (a) evidence of using binomial probability
e.g. $\mathrm{P}(X=2)=\binom{7}{2}(0.18)^{2}(0.82)^{5}$
$\mathrm{P}(X=2)=0.252$
A1 N2
(b) METHOD 1
evidence of using the complement M1
e.g. $1-(\mathrm{P}(X \leq 1))$
$\mathrm{P}(X \leq 1)=0.632$
(A1)
$\mathrm{P}(X \geq 2)=0.368$
A1 N2

METHOD 2

evidence of attempting to sum probabilities
e.g. $\mathrm{P}(2$ heads $)+\mathrm{P}(3$ heads $)+\ldots+\mathrm{P}(7$ heads $), 0.252+0.0923+\ldots$
correct values for each probability
e.g. $0.252+0.0923+0.0203+0.00267+0.0002+0.0000061$
$\mathrm{P}(X \geq 2)=0.368$
A1 N2
[5]
6.

Note: Candidates may be using tables in this question, which leads to a variety of values. Accept reasonable answers that are consistent with working shown.
$W \sim \mathrm{~N}\left(2.5,0.3^{2}\right)$
(a) (i) $z=-1.67 \quad$ (accept 1.67)
$\mathrm{P}(W<2)=0.0478 \quad$ (accept answers between 0.0475 and 0.0485)
A1 N 2
(ii) $z=1$
(iii)

A1A1
Note: Award Al for a vertical line to left of mean andshading to left, Al for vertical line to right of mean and shading to right.
(iv) Evidence of appropriate calculation
$e g 1-(0.047790+0.15866), 0.8413-0.0478$

$$
P=0.7936
$$

Note: \quad The final value may vary depending on what level of accuracy is used.
Accept their value in subsequent parts.
(b) (i) $\quad X \sim \mathrm{~B}(10,0.7935 \ldots)$

Evidence of calculation
eg $\mathrm{P}(X=10)=(0.7935 \ldots)^{10}$
$\mathrm{P}(X=10)=0.0990(3 \mathrm{sf})$
A1 N1
(ii) METHOD 1

Recognizing $X \sim \mathrm{~B}(10,0.7935 \ldots) \quad$ (may be seen in (i))
$\mathrm{P}(X \leq 6)=0.1325 \ldots($ or $\mathrm{P}(X=1)+\ldots+\mathrm{P}(X=6))$
evidence of using the complement
eg $\mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6), \mathrm{P}(X \geq 7)=1-\mathrm{P}(X<7)$
$\mathrm{P}(X \geq 7)=0.867$
METHOD 2
Recognizing $X \sim \mathrm{~B}(10,0.7935 \ldots$...) (may be seen in (i))
For adding terms from $\mathrm{P}(X=7)$ to $\mathrm{P}(X=10)$

$$
\begin{align*}
\mathrm{P}(X \geq 7) & =0.209235+0.301604+0.257629+0.099030 \tag{A1}\\
& =0.867
\end{align*}
$$

A1 N3
7. $\quad X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right), \mathrm{P}(X<3)=0.2, \mathrm{P}(X>8)=0.1$
$\mathrm{P}(X<8)=0.9$
Attempt to set up equations

$$
\begin{equation*}
\frac{3-\mu}{\sigma}=-0.8416, \quad \frac{8-\mu}{\sigma}=1.282 \tag{M1}
\end{equation*}
$$

$3-\mu=-0.8416 \sigma$
$8-\mu=1.282 \sigma$
$5=2.1236 \sigma$
$\sigma=2.35, \quad \mu=4.99$
A1A1 N4
8. (a)
(i) $\quad a=-1$
$b=0.5$
(A1)
(A1)
(ii) (a) 0.841
(b) $0.6915-0.1587$ (or $0.8413-0.3085$)
(M1)
$=0.533(3 \mathrm{sf})$
(A1)
(N2) 6
(b) (i) Sketch of normal curve
(A1)(A1)

(ii) $c=0.647$
(A2) 4
[10]
9. (a) $\mathrm{P}(M \geq 350)=1-\mathrm{P}(M<350)=1-\mathrm{P}\left(Z<\frac{350-310}{30}\right)$

$$
\begin{align*}
& =1-\mathrm{P}(Z<1.333)=1-0.9088 \tag{M1}\\
& =0.0912 \text { (accept } 0.0910 \text { to } 0.0920) \tag{A1}
\end{align*}
$$

OR
$\mathrm{P}(M \geq 350)=0.0912$
(b)

$\mathrm{P}(Z<1.96)=1-0.025=0.975$
$1.96(30)=58.8$
$310-58.8<M<310+58.8 \Rightarrow a=251, b=369$

OR

$251<M<369$
Note: Award (G1) if only one of the end points is correct.
10.

Note: Where accuracy is not specified, accept answers with greater than 3 sf accuracy, provided they are correct as far as 3 sf
(a) $z=\frac{197-187.5}{9.5}=1.00$
$P(Z>1)=1-\Phi(1)=1-0.8413=0.1587$

$$
\begin{equation*}
=0.159(3 \mathrm{sf}) \tag{A1}
\end{equation*}
$$

$$
\begin{equation*}
=15.9 \% \tag{A1}
\end{equation*}
$$

OR

$$
\begin{align*}
\mathrm{P}(H>197) & =0.159 \tag{G2}\\
& =15.9 \%
\end{align*}
$$

(A1) 3
(b) Finding the $99^{\text {th }}$ percentile

$$
\begin{align*}
& \Phi(a)=0.99 \Rightarrow a=2.327(\text { accept } 2.33) \tag{A1}\\
& \Rightarrow 99 \% \text { of heights under } 187.5+2.327(9.5)=209.6065 \tag{M1}\\
&=210(3 \mathrm{sf}) \tag{G3}
\end{align*}
$$

OR
99\% of heights under 209.6 $=210 \mathrm{~cm}$ (3 sf)
(A1)

Height of standard doorway $=210+17=227 \mathrm{~cm}$
(A1) 4
[7]
11. (a) $Z=\frac{25-25.7}{0.50}=-1.4$
$\mathrm{P}(Z<-1.4)=1-\mathrm{P}(Z<1.4)$

$$
=1-0.9192
$$

$$
\begin{equation*}
=0.0808 \tag{A1}
\end{equation*}
$$

OR

$\mathrm{P}(W<25)=0.0808$
(b) $\mathrm{P}(Z<-a)=0.025 \Rightarrow \mathrm{P}(Z<a)=0.975$
$\Rightarrow a=1.960$

$$
\begin{align*}
\frac{25-\mu}{0.50}=-1.96 \Rightarrow \mu & =25+1.96(0.50) \tag{A1}\\
& =25+0.98=25.98 \tag{A1}\\
& =26.0(3 \mathrm{sf})
\end{align*}
$$

OR

$$
\begin{align*}
\frac{25.0-26.0}{0.50} & =-2.00 \tag{M1}\\
\mathrm{P}(Z<-2.00) & =1-\mathrm{P}(Z<2.00) \\
& =1-0.9772=0.0228 \tag{A1}\\
& \approx 0.025 \tag{A1}
\end{align*}
$$

OR

$\mu=25.98$
(G2)
\Rightarrow mean $=26.0(3 \mathrm{sf})$
(A1)(AG)
(c) Clearly, by symmetry $\mu=25.5$
$Z=\frac{25.0-25.5}{\sigma}=-1.96 \Rightarrow 0.5=1.96 \sigma$
$\Rightarrow \sigma=0.255 \mathrm{~kg}$
(A1) 3
(d) On average, $\frac{\text { cement saving }}{\text { bag }}=0.5 \mathrm{~kg}$
$\frac{\text { cost saving }}{\text { bag }}=0.5(0.80)=\$ 0.40$
To save $\$ 5000$ takes $\frac{5000}{0.40}=12500$ bags
12. (a) Area $A=0.1$
(A1) 1
(b) EITHER Since $p(X \geq 12)=p(X \leq 8)$,
then 8 and 12 are symmetrically disposed around the (M1)(R1) mean.

$$
\begin{equation*}
\text { Thus mean }=\frac{8+12}{2} \tag{M1}
\end{equation*}
$$

$$
\begin{equation*}
=10 \tag{A1}
\end{equation*}
$$

Notes: If a candidate says simply "by symmetry $\mu=10$ " with no further explanation award [3 marks] (M1, A1, R1). As a full explanation is requested award an additional (A1) for saying since $p(X<8)=p(X>12)$ and another (A1) for saying that the normal curve is symmetric.

$$
\text { OR } \begin{align*}
p(X \geq 12)=0.1 & \Rightarrow p\left(Z \geq \frac{12-\mu}{\sigma}\right)=0.1 \tag{M1}\\
& \Rightarrow p\left(Z \leq \frac{12-\mu}{\sigma}\right)=0.9 \\
p(X \leq 8)=0.1 & \Rightarrow p\left(Z \leq \frac{8-\mu}{\sigma}\right)=0.1 \\
& \Rightarrow p\left(Z \leq \frac{\mu-8}{\sigma}\right)=0.9 \tag{A1}
\end{align*}
$$

So $\frac{12-\mu}{\sigma}=\frac{\mu-8}{\sigma}$
$\Rightarrow 12-\mu=\mu-8$
$\Rightarrow \mu=10$
(c) $\Phi\left(\frac{12-10}{\sigma}\right)=0.9$
(A1)(M1)(A1)
Note: Award (A1) for $\left(\frac{12-10}{\sigma}\right)$, (M1) for standardizing, and (A1) for 0.9 .
$\Rightarrow \frac{2}{\sigma}=1.282$ (or 1.28)
$\sigma=\frac{2}{1.282}\left(\right.$ or $\left.\frac{2}{1.28}\right)$
$=1.56(3 \mathrm{sf})$
(AG) 5
Note: Working backwards from $\sigma=1.56$ to show it leads the given data should receive a maximum of [3 marks] if done correctly.
(d) $p(X \leq 11)=p\left(Z \leq \frac{11-10}{1.561}\right)($ or 1.56$)$
(M1)(A1)

Note: Award (M1) for standardizing and (A1) for $\left(\frac{11-10}{1.561}\right)$.
$=p(Z \leq 0.6407)($ or 0.641 or 0.64$)$
$=\Phi(0.6407)$
$=0.739(3 \mathrm{sf})$
13. (a) $p(4$ heads $)=\binom{8}{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{8-4}$

$$
\begin{align*}
& =\frac{8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4} \times\left(\frac{1}{2}\right)^{8} \tag{M1}\\
& =\frac{70}{256} \cong 0.273(3 \mathrm{sf}) \tag{A1}
\end{align*}
$$

(b) $\quad p(3$ heads $)=\binom{8}{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{8-3}=\frac{8 \times 7 \times 6}{1 \times 2 \times 3} \times\left(\frac{1}{2}\right)^{8}$
$=\frac{56}{256} \cong 0.219(3 \mathrm{sf})$
(c) $\quad p$ (5 heads) $=p$ (3 heads) (by symmetry)
$p(3$ or 4 or 5 heads $)=p(4)+2 p(3)$
$=\frac{70+2 \times 56}{256}=\frac{182}{256}$
$\approx 0.711(3 \mathrm{sf}) \quad$ (A1) 3

