## Math 6 SL **Probability Distributions**

- 1. Let X be normally distributed with mean 100 cm and standard deviation 5 cm.
  - On the diagram below, shade the region representing P(X > 105).



Given that P(X > 105) = 0.16 (correct to two significant figures), find P(d < X < 105). (c)

> (2) (Total 6 marks)

(2)

(2)

2. A test has five questions. To pass the test, at least three of the questions must be answered correctly.

The probability that Mark answers a question correctly is  $\frac{1}{5}$ . Let X be the number of questions that Mark answers correctly.

- (a) Find E(X). (i)
  - Find the probability that Mark passes the test. (ii)

Bill also takes the test. Let *Y* be the number of questions that Bill answers correctly. The following table is the probability distribution for *Y*.

| у                 | 0    | 1    | 2      | 3   | 4      | 5    |
|-------------------|------|------|--------|-----|--------|------|
| $\mathbf{P}(Y=y)$ | 0.67 | 0.05 | a + 2b | a-b | 2a + b | 0.04 |

(b) Show that 4a + 2b = 0.24. (i)

- Given that E(Y) = 1, find *a* and *b*. (ii)
- (c) Find which student is more likely to pass the test.

(3) (Total 17 marks)

**Practice Test Questions** 

(a)

(8)

(6)

| 3. | Only                                                                                                                                            | A multiple choice test consists of ten questions. Each question has five answers.<br>Only one of the answers is correct. For each question, Jose randomly chooses one of the five<br>answers. |                                                                                    |               |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------|--|--|--|--|
|    | (a)                                                                                                                                             | Find                                                                                                                                                                                          | I the expected number of questions Jose answers correctly.                         | (1)           |  |  |  |  |
|    | (b)                                                                                                                                             | Find                                                                                                                                                                                          | I the probability that Jose answers exactly three questions correctly.             | (2)           |  |  |  |  |
|    | (c)                                                                                                                                             | Find                                                                                                                                                                                          | the probability that Jose answers more than three questions correctly.             | (3)<br>marks) |  |  |  |  |
| 4. | The scores of a test given to students are normally distributed with a mean of 21. 80 % of the students have scores less than 23.7.             |                                                                                                                                                                                               |                                                                                    |               |  |  |  |  |
|    | (a)                                                                                                                                             | Find                                                                                                                                                                                          | I the standard deviation of the scores.                                            | (3)           |  |  |  |  |
|    | A student is chosen at random. This student has the same probability of having a score less than 25.4 as having a score greater than <i>b</i> . |                                                                                                                                                                                               |                                                                                    |               |  |  |  |  |
|    | (b)                                                                                                                                             | (i)                                                                                                                                                                                           | Find the probability the student has a score less than 25.4.                       |               |  |  |  |  |
|    |                                                                                                                                                 | (ii)                                                                                                                                                                                          | Find the value of <i>b</i> .                                                       |               |  |  |  |  |
|    |                                                                                                                                                 |                                                                                                                                                                                               | (Total 7                                                                           | (4)<br>marks) |  |  |  |  |
| 5. | The                                                                                                                                             | probability of obtaining heads on a biased coin is 0.18. The coin is tossed seven times.                                                                                                      |                                                                                    |               |  |  |  |  |
|    | (a)                                                                                                                                             | Find                                                                                                                                                                                          | I the probability of obtaining <b>exactly</b> two heads.                           | (2)           |  |  |  |  |
|    | (b) Find the probability of obtaining <b>at least</b> two heads.                                                                                |                                                                                                                                                                                               |                                                                                    |               |  |  |  |  |
|    |                                                                                                                                                 |                                                                                                                                                                                               | (Total 5                                                                           | (3)<br>marks) |  |  |  |  |
| 6. | The weights of chickens for sale in a shop are normally distributed with mean 2.5 kg and standard deviation 0.3 kg.                             |                                                                                                                                                                                               |                                                                                    |               |  |  |  |  |
|    | (a) A chicken is chosen at random.                                                                                                              |                                                                                                                                                                                               |                                                                                    |               |  |  |  |  |
|    |                                                                                                                                                 | (i)                                                                                                                                                                                           | Find the probability that it weighs less than 2 kg.                                |               |  |  |  |  |
|    |                                                                                                                                                 | (ii)                                                                                                                                                                                          | Find the probability that it weighs more than 2.8 kg.                              |               |  |  |  |  |
|    |                                                                                                                                                 | (iii)                                                                                                                                                                                         | Copy the diagram below. Shade the areas that represent the probabilities from part | S             |  |  |  |  |

(i) and (ii).



- (iv) **Hence** show that the probability that it weighs between 2 kg and 2.8 kg is 0.7936 (to four significant figures).
- (7)

- (b) A customer buys 10 chickens.
  - (i) Find the probability that all 10 chickens weigh between 2 kg and 2.8 kg.
  - (ii) Find the probability that at least 7 of the chickens weigh between 2 kg and 2.8 kg.

(6) (Total 13 marks)

7. The heights of certain flowers follow a normal distribution. It is known that 20% of these flowers have a height less than 3 cm and 10% have a height greater than 8 cm.

Find the value of the mean  $\mu$  and the standard deviation  $\sigma$ .

## (Total 6 marks)

- **8.** Reaction times of human beings are normally distributed with a mean of 0.76 seconds and a standard deviation of 0.06 seconds.
  - (a) The graph below is that of the **standard** normal curve. The shaded area represents the probability that the reaction time of a person chosen at random is between 0.70 and 0.79 seconds.



- (i) Write down the value of *a* and of *b*.
- (ii) Calculate the probability that the reaction time of a person chosen at random is
  - (a) greater than 0.70 seconds;
  - (b) between 0.70 and 0.79 seconds.

(6)

Three percent (3%) of the population have a reaction time less than *c* seconds.

- (b) (i) Represent this information on a diagram similar to the one above. Indicate clearly the area representing 3%.
  - (ii) Find c.

(4) (Total 10 marks)

- **9.** It is claimed that the masses of a population of lions are normally distributed with a mean mass of 310 kg and a standard deviation of 30 kg.
  - (a) Calculate the probability that a lion selected at random will have a mass of 350 kg or more.
  - (b) The probability that the mass of a lion lies between *a* and *b* is 0.95, where *a* and *b* are symmetric about the mean. Find the value of *a* and of *b*.

(3) (Total 5 marks)

(3)

(2)

- **10.** In a country called *Tallopia*, the height of adults is normally distributed with a mean of 187.5 cm and a standard deviation of 9.5 cm.
  - (a) What percentage of adults in *Tallopia* have a height greater than 197 cm?
  - (b) A standard doorway in *Tallopia* is designed so that 99% of adults have a space of at least 17 cm over their heads when going through a doorway. Find the height of a standard doorway in *Tallopia*. Give your answer to the nearest cm.

(4) (Total 7 marks)

- **11.** Bags of cement are labelled 25 kg. The bags are filled by machine and the actual weights are normally distributed with mean 25.7 kg and standard deviation 0.50 kg.
  - (a) What is the probability a bag selected at random will weigh less than 25.0 kg?

(2)

In order to reduce the number of underweight bags (bags weighing less than 25 kg) to 2.5% of the total, the mean is increased without changing the standard deviation.

(b) Show that the increased mean is 26.0 kg.

It is decided to purchase a more accurate machine for filling the bags. The requirements for this machine are that only 2.5% of bags be under 25 kg and that only 2.5% of bags be over 26 kg.

(c) Calculate the mean and standard deviation that satisfy these requirements.

(3)

(3)

The cost of the new machine is \$5000. Cement sells for \$0.80 per kg.

(d) Compared to the cost of operating with a 26 kg mean, how many bags must be filled in order to recover the cost of the new equipment?

(3) (Total 11 marks) 12. The graph shows a normal curve for the random variable X, with mean  $\mu$  and standard deviation  $\sigma$ .



It is known that  $p(X \ge 12) = 0.1$ .

(a) The shaded region A is the region under the curve where  $x \ge 12$ . Write down the area of the shaded region A.

It is also known that  $p(X \le 8) = 0.1$ .

| Find the value of $\mu$ , explaining your method in full.              | (5)                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Show that $\sigma = 1.56$ to an accuracy of three significant figures. | (5)                                                                                                                                                                                                                                              |
| Find <i>p</i> ( <i>X</i> $\leq$ 11).                                   | (5)<br>(Total 16 marks)                                                                                                                                                                                                                          |
| r coin is tossed eight times. Calculate                                |                                                                                                                                                                                                                                                  |
| the probability of obtaining exactly 4 heads;                          | (2)                                                                                                                                                                                                                                              |
| the probability of obtaining exactly 3 heads;                          | (1)                                                                                                                                                                                                                                              |
| the probability of obtaining 3, 4 or 5 heads.                          | (3)<br>(Total 6 marks)                                                                                                                                                                                                                           |
|                                                                        | Show that $\sigma = 1.56$ to an accuracy of three significant figures.<br>Find $p$ ( $X \le 11$ ).<br>ir coin is tossed eight times. Calculate<br>the probability of obtaining exactly 4 heads;<br>the probability of obtaining exactly 3 heads; |

13.

(1)