Exam Review

Calculus

1. The curve $y=f(x)$ passes through the point $(2,6)$.

Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-5$, find y in terms of x.
2. Let $f(x)=\frac{3 x^{2}}{5 x-1}$.
(a) Write down the equation of the vertical asymptote of $y=f(x)$.
(b) Find $f^{\prime}(x)$. Give your answer in the form $\frac{a x^{2}+b x}{(5 x-1)^{2}}$ where a and $b \in \mathbb{Z}$.
(Total 5 marks)
3. The following diagram shows the graphs of $f(x)=\ln (3 x-2)+1$ and $g(x)=-4 \cos (0.5 x)+2$, for $1 \leq x \leq 10$.

(a) Let A be the area of the region enclosed by the curves of f and g.
(i) Find an expression for A.
(ii) Calculate the value of A.
(b) (i) \quad Find $f^{\prime}(x)$.
(ii) Find $g^{\prime}(x)$.
(c) There are two values of x for which the gradient of f is equal to the gradient of g. Find both these values of x.
4. The diagram below shows part of the graph of the gradient function, $y=f^{\prime}(x)$.

(a) On the grid below, sketch a graph of $y=f^{\prime \prime}(x)$, clearly indicating the x-intercept.

(b) Complete the table, for the graph of $y=f(x)$.

		x-coordinate
(i)	Maximum point on f	
(ii) \quad Inflexion point on f		

(c) Justify your answer to part (b) (ii).
5. Let $\int_{1}^{5} 3 f(x) \mathrm{d} x=12$.
(a) Show that $\int_{1}^{5} f(x) \mathrm{d} x=-4$.
(b) Find the value of $\int_{1}^{5}(x+f(x)) \mathrm{d} x+\int_{2}^{5}(x+f(x)) \mathrm{d} x$.
6. Consider $f(x)=\frac{1}{3} x^{3}+2 x^{2}-5 x$. Part of the graph of f is shown below. There is a maximum point at M , and a point of inflexion at N .

(a) Find $f^{\prime}(x)$.
(b) Find the x-coordinate of M .
(c) Find the x-coordinate of N .
(d) The line L is the tangent to the curve of f at $(3,12)$. Find the equation of L in the form $y=a x+b$.
7. On the axes below, sketch a curve $y=f(x)$ which satisfies the following conditions.

x	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$
$-2 \leq x<0$		negative	positive
0	-1	0	positive
$0<x<1$	2	positive	positive
1		positive	0
$1<x \leq 2$		positive	negative

(Total 6 marks)
8. Differentiate each of the following with respect to x.
(a) $y=\sin 3 x$
(b) $y=x \tan x$
(c) $y=\frac{\ln x}{x}$
9. The function $f(x)$ is defined as $f(x)=3+\frac{1}{2 x-5}, x \neq \frac{5}{2}$.
(a) Sketch the curve of f for $-5 \leq x \leq 5$, showing the asymptotes.
(b) Using your sketch, write down
(i) the equation of each asymptote;
(ii) the value of the x-intercept;
(iii) the value of the y-intercept.
(c) The region enclosed by the curve of f, the x-axis, and the lines $x=3$ and $x=a$, is revolved through 360° about the x-axis. Let V be the volume of the solid formed.
(i) Find $\int\left(9+\frac{6}{2 x-5}+\frac{1}{(2 x-5)^{2}}\right) \mathrm{d} x$.
(ii) Hence, given that $V=\pi\left(\frac{28}{3}+3 \ln 3\right)$, find the value of a.
(10)
(Total 17 marks)
10. Consider the function $f(x)=4 x^{3}+2 x$. Find the equation of the normal to the curve of f at the point where $x=1$.
(Total 6 marks)
11. The following diagram shows part of the graph of a quadratic function, with equation in the form $y=(x-p)(x-q)$, where $p, q \in \mathbb{Z}$.

(a) Write down
(i) the value of p and of q;
(ii) the equation of the axis of symmetry of the curve.
(b) Find the equation of the function in the form $y=(x-h)^{2}+k$, where $h, k \in \mathbb{Z}$.
(c) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(d) Let T be the tangent to the curve at the point $(0,5)$. Find the equation of T.
12. The velocity, v, in $\mathrm{m} \mathrm{s}^{-1}$ of a particle moving in a straight line is given by $v=\mathrm{e}^{3 t-2}$, where t is the time in seconds.
(a) Find the acceleration of the particle at $t=1$.
(b) At what value of t does the particle have a velocity of $22.3 \mathrm{~m} \mathrm{~s}^{-1}$?
(c) Find the distance travelled in the first second.
(Total 6 marks)
13. Let $f(x)=x^{3}-3 x^{2}-24 x+1$.

The tangents to the curve of f at the points P and Q are parallel to the x-axis, where P is to the left of Q .
(a) Calculate the coordinates of P and of Q .

Let N_{1} and N_{2} be the normals to the curve at P and Q respectively.
(b) Write down the coordinates of the points where
(i) the tangent at P intersects N_{2};
(ii) the tangent at Q intersects N_{1}.
(Total 6 marks)
14. The shaded region in the diagram below is bounded by $f(x)=\sqrt{x}, x=a$, and the x-axis. The shaded region is revolved around the x-axis through 360°. The volume of the solid formed is 0.845π.

Find the value of a.

