1. (a) (i) $\mathrm{P}(B)=\frac{3}{4}$
(ii) $\quad \mathrm{P}(R)=\frac{1}{4}$
(b) $\quad p=\frac{3}{4}$

A1 N1
$s=\frac{1}{4}, t=\frac{3}{4}$
(c) (i) $\mathrm{P}(X=3)$

$$
=\mathrm{P}(\text { getting } 1 \text { and } 2)=\frac{1}{4} \times \frac{3}{4}
$$

A1
$=\frac{3}{16}$
(ii) $\mathrm{P}(X=2)=\frac{1}{4} \times \frac{1}{4}+\frac{3}{4}\left(\right.$ or $\left.1-\frac{3}{16}\right)$
$=\frac{13}{16}$
(A1)

A1
(d) (i)

| $X$ | 2 | 3 |
| :---: | :---: | :---: |
| $\mathrm{P}(X=x)$ | $\frac{13}{16}$ | $\frac{3}{16}$ |

(ii) evidence of using $\mathrm{E}(X)=\sum x \mathrm{P}(X=x)$
$\mathrm{E}(X)=2\left(\frac{13}{16}\right)+3\left(\frac{3}{16}\right)$
$=\frac{35}{16}\left(=2 \frac{3}{16}\right)$
A1
(e) win $\$ 10 \Rightarrow$ scores 3 one time, 2 other time
$\mathrm{P}(3) \times \mathrm{P}(2)=\frac{13}{16} \times \frac{3}{16}$ (seen anywhere)
A1
evidence of recognizing there are different ways of winning $\$ 10$
(M1)
eg $\mathrm{P}(3) \times \mathrm{P}(2)+\mathrm{P}(2) \times \mathrm{P}(3), 2\left(\frac{13}{16} \times \frac{3}{16}\right)$,
$\frac{36}{256}+\frac{3}{256}+\frac{36}{256}+\frac{3}{256}$
$\mathrm{P}($ win $\$ 10)=\frac{78}{256} \quad\left(=\frac{39}{128}\right)$
A1
2.

Note: Candidates may be using tables in this question, which leads to a variety of values. Accept reasonable answers that are consistent with working shown.
$z=-1.67 \quad$ (accept 1.67)
$\mathrm{P}(W<2)=0.0478 \quad$ (accept answers between 0.0475 and
$0.0485)$
(ii) $z=1$
$\mathrm{P}(W>2.8)=0.159$
(iii)


Note: Award Al for a vertical line to left of mean and shading to left, Al for vertical line to right of mean and shading to right
(iv) Evidence of appropriate calculation M1 eg $1-(0.047790+0.15866), 0.8413-0.0478$
$P=0.7936$
Note: The final value may vary depending on what level of accuracy is used. Accept their value in subsequent parts.
(i) $X$ B(10,07935

Evidence of calculation
eg $\mathrm{P}(X=10)=(0.7935 \ldots)^{10}$
$\mathrm{P}(X=10)=0.0990(3 \mathrm{sf})$
(ii) METHOD 1

Recognizing $X \sim \mathrm{~B}(10,0.7935 \ldots$...) (may be seen in (i)) (M1)
$\mathrm{P}(X \leq 6)=0.1325 \ldots$ (or $\mathrm{P}(X=1)+\ldots+\mathrm{P}(X=6))$
evidence of using the complemen (M1)
eg $\mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6), \mathrm{P}(X \geq 7)=1-\mathrm{P}(X<7)$
$\mathrm{P}(X \geq 7)=0.867$
A1 N3
METHOD 2
Recognizing $X \sim \mathrm{~B}(10,0.7935 \ldots$...) (may be seen in (i)) (M1)
For adding terms from $\mathrm{P}(X=7)$ to $\mathrm{P}(X=10)$
$\mathrm{P}(X \geq 7)=0.209235+0.301604+0.257629+0.099030$
A1)

## $=0.867$

A1 N3
3. (a)

> For summing to 1 eg $0.1+a+0.3+b=1$ $a+b=0.6$
(b) evidence of correctly using $\mathrm{E}(X)=\sum x f(x) \quad$ (M1)
eg $0 \times 0.1+1 \times a+2 \times 0.3+3 \times b, 0.1+a+0.6+3 b=1.5$
Correct equation $0+a+0.6+3 b=1.5 \quad(a+3 b=0.9$
(A1)
Solving simultaneously gives
$a=0.45 \quad b=0.15$
A1A1 N3

(b) $\left(\frac{4}{10} \times \frac{6}{9}\right)+\left(\frac{6}{10} \times \frac{4}{9}\right)$
$=\frac{48}{90}\left(\frac{8}{15}, 0.533\right)$
5. (a) $\frac{19}{120}(=0.158)$
(b) $35-(8+5+7)(=15)$

Probability $=\frac{15}{120}\left(=\frac{3}{24}=\frac{1}{8}=0.125\right)$
AlA1A1 N3
M1M1

A1 N 1

N1
(M1)
A1 N 2
c) $\begin{aligned} & \text { Number studying }=76 \\ & \text { Number not studying }=120-\text { number studying }=44\end{aligned}$

Probability $=\frac{44}{120}\left(=\frac{11}{30}=0.367\right)$
(A1)
(M1)
A1 N3
6. (a) $\mathrm{P}(F \cup S)=1-0.14(=0.86)$
(A1)
Choosing an appropriate formula
eg $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
Correct substitution
eg $\mathrm{P}(F \cap S)=0.93-0.86$
$\mathrm{P}(F \cap S)=0.07$
Notes: There are several valid approaches. Award (Al)(MI)Al for relevant working using any appropriate strategy eg formula, Venn
Diagram, or table.
Award no marks for the incorrect solution
$\mathrm{P}(F \cap S)=1-\mathrm{P}(F)+\mathrm{P}(S)=1-0.93=0.07$
(b) Using conditional probability
(M1)
$e g \mathrm{P}(F \mid S)\left(=\frac{\mathrm{P}(F \cap S)}{\mathrm{P}(S)}\right)$
$\mathrm{P}(F \mid S)=\frac{0.07}{0.62}$
$=0.113$
(c) $F$ and $S$ are not independent
(A1)
A1 N3

EITHER
If independent $\mathrm{P}(F \mid S)=\mathrm{P}(F), 0.113 \neq 0.31$

OR
If independent $\mathrm{P}(F \cap S)=\mathrm{P}(F) \mathrm{P}(S), 0.07 \neq 0.31 \times 0.62(=0.1922) \quad$ R1R1
(d) Let $\mathrm{P}(F)=x$
$\mathrm{P}(S)=2 \mathrm{P}(F)(=2 x) \quad$ (A1)
For independence $\mathrm{P}(F \cap S)=\mathrm{P}(F) \mathrm{P}(S)\left(=2 x^{2}\right)$
Attempt to set up a quadratic equation
eg $\mathrm{P}(F \cup S)=\mathrm{P}(F) \mathrm{P}(S)-\mathrm{P}(F) \mathrm{P}(S), 0.86=x+2 x-2 x^{2}$
$2 x^{2}-3 x+0.86=0$
$x=0.386, x=1.11$
$\mathrm{P}(F)=0.386$
$\frac{3-\mu}{\sigma}=-0.8416, \frac{8-\mu}{\sigma}=1.282$
$3-\mu=-0.8416 \sigma$
$8-\mu=1.282 \sigma$
$5=2.1236 \sigma$
$\sigma=2.35, \quad \mu=4.99$
8. (a) For attempting to use the formula $(\mathrm{P}(E \cap F)=\mathrm{P}(E) \mathrm{P}(F))$ (M1)

Correct substitution or rearranging the formula
eg $\frac{1}{3}=\frac{2}{3} \mathrm{P}(F), \mathrm{P}(F)=\frac{\mathrm{P}(E \cap F)}{\mathrm{P}(E)}, \mathrm{P}(F)=\frac{\frac{1}{3}}{\frac{2}{3}}$
$\mathrm{P}(F)=\frac{1}{2}$
(b) For attempting to use the formula $(\mathrm{P}(E \cup F)=\mathrm{P}(E)+\mathrm{P}(F)$
$-(\mathrm{P}(E \cap F))$
-(P(E $\cap$ F)

$$
\mathrm{P}(E \cup F)=\frac{2}{3}+\frac{1}{2}-\frac{1}{3}
$$

$$
=\frac{5}{6}(=0.833)
$$

9. (a) $\quad X \sim \mathrm{~B}(100,0.02)$ $E(X)=100 \times 0.02=2$
(b) $\quad P(X=3)=\binom{100}{3}(0.02)^{3}(0.98)^{97}$
$=0.182$
(R1)

AI

A1 N 2

A1 1
(c) METHOD 1
$\mathrm{P}(X>1)=1-\mathrm{P}(X \leq 1)=1-(\mathrm{P}(X=0)+\mathrm{P}(X=1)$
$=1-\left((0.98)^{100}+100(0.02)(0.98)^{99}\right)$
M1
$=0.597$

METHOD 2
$\mathrm{P}(X>1)=1-\mathrm{P}(X \leq 1)$
$=1-0.40327$
$=0.597$
$\stackrel{(\mathrm{M} 1)}{(\mathrm{Al})}$
$=0.597$
Note: Award marks as follows for finding $P(X>1)$, Note: Awara mark
if working shown.
$\begin{array}{lr}\mathrm{P}(X \geq 1) & \text { A0 } \\ =1-\mathrm{P}(\mathrm{X}<2)=1-0.67668 & \mathrm{M} 1(\mathrm{ft})\end{array}$
$\begin{aligned} & =1-\mathrm{P}(\mathrm{X}<2)=1-0.67668 \\ & =0.323\end{aligned}$
[6]
10. (a) Independent (I) (C2)

Mutually exclusive (M) (C2)
(c) Neither ( N )

Note: Award part marks if the candidate shows understanding of I and/or
eg I $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$
M $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B) \quad$ (M1)
(M1)

