MATHEMATICS SL

3-D VECTOR EXAMPLE PROBLEMS

1. Given coordinates of A and B in 3-space, express AB as:
(a) a 3×1 column vector
(b) in the form $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$

Example: $\quad \mathrm{A}=(5,7,-2)$ and $\mathrm{B}=(8,3,4)$. Then
$\mathbf{A B}=\left(\begin{array}{c}8 \\ 3 \\ 4\end{array}\right)-\left(\begin{array}{c}5 \\ 7 \\ -2\end{array}\right)=\left(\begin{array}{c}8-5 \\ 3-7 \\ 4-(-2)\end{array}\right)=\left(\begin{array}{c}3 \\ -4 \\ 6\end{array}\right)=3 \mathbf{i}-4 \mathbf{j}+6 \mathbf{k}$
2. Given coordinates of 3 of 4 vertices of a parallelogram in 3-space, find coordinates of the 4th vertex using $\mathbf{C D}=-\mathbf{A B}$.

Example: $\quad \mathrm{A}=(2,3,1), \mathrm{B}=(6,5,4), \mathrm{C}=(3,1,5) \quad \mathrm{ABCD}$ is parallelogram. Find D

$$
\mathbf{A B}=4 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k} \quad \Rightarrow \quad \mathbf{C D}=-4 \mathbf{i}-2 \mathbf{j}-3 \mathbf{k}
$$

$$
\mathbf{O D}=\mathbf{O C}+\mathbf{C D}=3 \mathbf{i}+\mathbf{j}+5 \mathbf{k}+(-4 \mathbf{i}-2 \mathbf{j}-3 \mathbf{k})=-\mathbf{i}-\mathbf{j}+2 \mathbf{k} \quad \Rightarrow \quad D=(-1,-1,2)
$$

3. Calculate sums, differences and scalar multiples of vectors.

Example: Let $\mathbf{a}=\left(\begin{array}{c}2 \\ -1 \\ 5\end{array}\right), \mathbf{b}=\left(\begin{array}{c}4 \\ 3 \\ -2\end{array}\right), \mathbf{c}=\left(\begin{array}{c}5 \\ 4 \\ 0\end{array}\right)$. Find $4 \mathbf{a}-3 \mathbf{b}+2 \mathbf{c}$.

$$
4\left(\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right)-3\left(\begin{array}{c}
4 \\
3 \\
-2
\end{array}\right)+2\left(\begin{array}{l}
5 \\
4 \\
0
\end{array}\right)=\left(\begin{array}{c}
4(2)-3(4)+2(5) \\
4(-1)-3(3)+2(4) \\
4(5)-3(-2)+2(0)
\end{array}\right)=\left(\begin{array}{c}
6 \\
-5 \\
26
\end{array}\right)
$$

4. Find the magnitude (length) (size) of a vector.

Example: $\quad \mathbf{a}=\left(\begin{array}{c}2 \\ 6 \\ -3\end{array}\right) \quad$ Then $\left\lvert\,\left(\begin{array}{c}2 \\ 6 \\ -3\end{array}\right)=\sqrt{2^{2}+6^{2}+(-3)^{2}}=\sqrt{49}=7\right.$
5. Find a unit vector (a vector of unit magnitude) in a given direction.

Example: Find a unit vector in the direction of the vector $\left(\begin{array}{c}2 \\ 6 \\ -3\end{array}\right)$.
From previous example, magnitude $=7$ so unit vector is $\frac{1}{7}\left(\begin{array}{c}2 \\ 6 \\ -3\end{array}\right)=\left(\begin{array}{c}2 / 7 \\ 6 / 7 \\ -3 / 7\end{array}\right)$
6. Given a direction and a magnitude, find the vector.

Example: A jet is flying at $700 \mathrm{~km} \mathrm{~h}^{-1}$ in the direction of $\left(\begin{array}{c}2 \\ 6 \\ -3\end{array}\right)$.
Write down its velocity vector.

$$
\mathbf{v}=700\left(\begin{array}{c}
2 / 7 \\
6 / 7 \\
-3 / 7
\end{array}\right)=\left(\begin{array}{c}
200 \\
600 \\
-300
\end{array}\right)
$$

7. Express the vector (parametric) equation of a straight line given
(a) the coordinates of one point on the line and a vector in the direction of the line.
(b) the coordinates of two points on the line.

Example: (a) Find vector equation of line through $(2,1,3)$ in direction of $3 \mathbf{i}+5 \mathbf{j}-2 \mathbf{k}$.
Equation is: $\quad\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}2 \\ 1 \\ 3\end{array}\right)+p\left(\begin{array}{c}3 \\ 5 \\ -2\end{array}\right)=\left(\begin{array}{c}2+3 p \\ 1+5 p \\ 3-2 p\end{array}\right)$

Example: (b) Find vector equation of line through A $(5,7,-2)$ and $\mathrm{B}(8,3,4)$ Vector in direction of line is $\mathbf{A B}=3 \mathbf{i}-4 \mathbf{j}+6 \mathbf{k}$ so

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
5 \\
7 \\
-2
\end{array}\right)+p\left(\begin{array}{c}
3 \\
-4 \\
6
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
8 \\
3 \\
4
\end{array}\right)+p\left(\begin{array}{c}
3 \\
-4 \\
6
\end{array}\right)
$$

Note: Students are not responsible for Cartesian equations of lines in 3-D.
8. Given the equations of two non-parallel 3-D lines in parametric form, either
(a) find the coordinates of their point of intersection, or
(b) show the two lines do not intersect.

Example: (a) Line 1 has the equation

Line 2 has the equation $\quad\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-5 \\ 0 \\ -4\end{array}\right)+t\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right)$
At their point of intersection

$$
\begin{aligned}
& x=5+2 s=-5+2 t \Rightarrow 2 s-2 t=-10 \\
& y=9+6 s=0-\mathrm{t} \Rightarrow 6 s+t=-9 \\
& z=-4-3 s=-4+2 t \Rightarrow 3 s+2 t=0
\end{aligned}
$$

3 equations in 2 unknowns do not usually have a solution. To check, solve 2 of the 3 equations for s and t and then find if this solution also satisfies the other equation. If it does, there is a point of intersection, if it doesn't, there is not.

In the case of our two lines, solving the equations for x and z gives $s=-2$ and $t=3$. Checking the equations for y shows this solution satisfies all 3 equations. The point of intersection will be:
$x=5+2(-2)=-5+2(3)=1, y=9+6(-2)=0-3=-3, z=-4-3(-2)=-4+2(3)=2$
so the point of intersection of these 2 lines is $(1,-3,2)$

Example:

$$
\text { (b) Line } 3 \text { has the equation } \quad\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-4 \\
3 \\
-5
\end{array}\right)+t\left(\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right)
$$

To see if line 1 and line 3 intersect, we follow the same procedure and obtain the same relation between s and t from x and z, but from y we obtain $9+6 \mathrm{~s}=3-\mathrm{t} \Rightarrow 6 s+t=-6$. Since $6(-2)+3=-9 \neq-6$, we know that these lines do not intersect. Such lines are called skew lines.

Note that one must use a different parameter for each of the two lines being tested.
9. Write and interpret displacement-time equations in the form:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)+t\left(\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right) \text { where } \boldsymbol{v}=\left(\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right) \text { is the velocity vector and } t \text { is time. }
$$

Example: The equation $\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}500 \\ 200 \\ 10\end{array}\right)+t\left(\begin{array}{c}300 \\ 400 \\ -2\end{array}\right)$ could describe an airplane that at
$t=0$ is 500 km East, 200 km North and 10 km above the reference point and has an East velocity component of $300 \mathrm{~km} \mathrm{~h}^{-1}$, a North velocity component of $400 \mathrm{~km} \mathrm{~h}^{-1}$ and is descending towards the surface at $2 \mathrm{~km} \mathrm{~h}^{-1}$. The time in hours is given by t.
10. Calculate the scalar product of two 3-D vectors.

Example: $\quad \boldsymbol{a}=2 \mathbf{i}+6 \mathbf{j}-3 \mathbf{k} \quad, \quad \boldsymbol{b}=2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$

$$
\boldsymbol{a} \cdot \boldsymbol{b}=2(2)+6(-1)-3(2)=-8
$$

11. Apply $\boldsymbol{a} \cdot \boldsymbol{b}=0$ to problems involving perpendicular 3-D vectors.

Example: $\quad \boldsymbol{a}=\left(\begin{array}{c}4 \\ 5 \\ -3\end{array}\right), \quad \boldsymbol{b}=\left(\begin{array}{c}2 \\ 1 \\ 1\end{array}\right) ; \quad \boldsymbol{a}+k \boldsymbol{b}$ is perpendicular to \boldsymbol{b}. Find k.

$$
\begin{aligned}
& \left(\begin{array}{c}
4 \\
5 \\
-3
\end{array}\right) \cdot\left(\begin{array}{c}
4+2 k \\
5+k \\
-3+k
\end{array}\right)=4(4+2 k)+5(5+k)=(-3)(-3+k)=50+10 k=0 \\
& \Rightarrow k=-5 \quad \Rightarrow \quad \boldsymbol{a}+k \boldsymbol{b}=\left(\begin{array}{c}
4-5(2) \\
5-5(1) \\
-3-5(1)
\end{array}\right)=\left(\begin{array}{c}
-6 \\
0 \\
-8
\end{array}\right)
\end{aligned}
$$

12. Use the scalar product to find the angle between:
(a) two 3-D vectors in component form
(b) two intersecting 3-D lines in vector (parametric) form.

Example:
(a) $\quad \boldsymbol{a}=\left(\begin{array}{c}2 \\ 6 \\ -3\end{array}\right), \quad \boldsymbol{b}=\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right)$

$$
\begin{aligned}
& |\vec{a}|=\sqrt{2^{2}+6^{2}+(-3)^{2}}=7 \quad, \quad|\vec{b}|=\sqrt{2^{2}+(-1)^{2}+2^{2}}=3 \\
& \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{2(2)+6(-1)+(-3)(2)}{7(3)}=\frac{-8}{21} \quad \Rightarrow \quad \theta=112.4^{\circ}
\end{aligned}
$$

Example: (b) In exercise 8(a), Line 1 and Line 2 were shown to intersect at the point $(1,-3,2)$. A vector in the direction of Line 1 is vector \boldsymbol{a} above. A vector in the direction of Line 2 is vector \boldsymbol{b} above. Therefore, the angle between the two lines at their point of intersection is 112.4°.

