C2 Trigonometry

1 Find, in terms of π, the values of x in the interval $0 \leq x \leq 2 \pi$ for which
a $3 \tan x-\sqrt{3}=0$,
b $2 \cos \left(x+\frac{\pi}{3}\right)+\sqrt{3}=0$.
2 Given that $\cos A=\sqrt{3}-1$,
a find the value of $\sin ^{2} A$ in the form $p \sqrt{3}+q$ where p and q are integers,
b show that $\tan ^{2} A=\frac{\sqrt{3}}{2}$.
3

The diagram shows sector $O A B$ of a circle, centre O, radius 8 cm , in which $\angle A O B=45^{\circ}$.
a Find the perimeter of the sector in centimetres to 1 decimal place.
b Show that the area of the shaded segment is $8(\pi-2 \sqrt{2}) \mathrm{cm}^{2}$.
4 Find, to 1 decimal place, the values of θ in the interval $0 \leq \theta \leq 360^{\circ}$ for which

$$
2 \sin ^{2} \theta+\sin \theta-\cos ^{2} \theta=2
$$

5 Solve, for x in the interval $-\pi \leq x \leq \pi$, the equation

$$
3 \sin ^{2} x=4(1-\sin x)
$$

giving your answers to 2 decimal places.

6

The diagram shows the curves $y=2 \sin x$ and $y=3 \cos x$ for x in the interval $0 \leq x \leq 2 \pi$.
Find, to 2 decimal places, the coordinates of the points where the curves intersect in this interval.
7 a Sketch the curve $y=\cos 2 x^{\circ}$ for x in the interval $0 \leq x \leq 360$.
b Find the values of x in the interval $0 \leq x \leq 360$ for which

$$
\cos 2 x^{\circ}=-\frac{1}{2}
$$

8 Solve, for θ in the interval $0 \leq \theta \leq 360$, the equation

$$
12 \cos \theta^{\circ}=7 \tan \theta^{\circ}
$$

giving your answers to 1 decimal place.
$9 \quad$ Given that $\quad \tan 15^{\circ}=\frac{\tan 60^{\circ}-\tan 45^{\circ}}{1+\left(\tan 60^{\circ} \times \tan 45^{\circ}\right)}$,
a show that $\tan 15^{\circ}=2-\sqrt{3}$,
b find the exact value of $\tan 345^{\circ}$.
10 Find, to an appropriate degree of accuracy, the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
\sin ^{2} x+5 \cos x-3 \cos ^{2} x=2
$$

11

The diagram shows triangle $A B C$ in which $A C=18 \mathrm{~cm}, \angle B A C=41^{\circ}$ and $\angle A C B=26^{\circ}$.
Find to 3 significant figures
a the length $B C$,
b the area of triangle $A B C$.
12 Solve, for θ in the interval $0 \leq \theta \leq 360^{\circ}$, the equation

$$
(6 \cos \theta-1)(\cos \theta+1)=3
$$

13 Find, in degrees to 1 decimal place, the values of x in the interval $-180^{\circ} \leq x \leq 180^{\circ}$ for which

$$
\sin ^{2} x+5 \sin x=2 \cos ^{2} x
$$

14 Prove that
a $\sin ^{4} \theta-2 \sin ^{2} \theta \equiv \cos ^{4} \theta-1$,
b $\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta} \equiv \frac{2}{\sin \theta}$, for $\sin \theta \neq 0$.

The gears in a toy are shown in the diagram above.
A thin rubber band passes around two circular discs. The centres of the discs are at P and Q where $P Q=8 \mathrm{~cm}$ and their radii are 2 cm and 5 cm respectively. The sections of the rubber band not in contact with the discs, $R S$ and $T U$, are assumed to be taught.
a Show that $\angle P Q R=1.186$ radians to 3 decimal places.
b Find the length $R S$.
c Find the length of the rubber band in this situation.

