C2 TRIGONOMETRY

1 Find, to 1 decimal place, the values of x in the interval $-180^{\circ} \leq x \leq 180^{\circ}$ for which
a $\cos \left(x+40^{\circ}\right)=0.3$,
b $2+\tan 2 x=0$.
2 Find, to 1 decimal place, the values of x in the interval $0 \leq x \leq 360$ for which

$$
\begin{equation*}
2 \tan ^{2} x^{\circ}-4 \tan x^{\circ}+1=0 \tag{6}
\end{equation*}
$$

3

The diagram shows sector $O A B$ of a circle, centre O, radius 15 cm .
Given that $\angle A O B=\theta$ radians and that the length of the arc $A B$ is 32.1 cm ,
a find the value of θ,
b find the area of sector $O A B$.
4 Solve, for x in the interval $0 \leq x \leq \pi$, the equation

$$
\sin \left(2 x-\frac{\pi}{3}\right)=\frac{1}{2},
$$

giving your answers in terms of π.
5 a Given that $\sin A=1-\sqrt{2}$, show that $\cos ^{2} A+2 \sin A=0$.
b Sketch the curve $y=\sin \left(x+\frac{\pi}{3}\right)$ for x in the interval $0 \leq x \leq 2 \pi$.
Label on your sketch
i the value of x at each point where the curve intersects the x-axis,
ii the coordinates of the maximum and minimum points of the curve.
6 Find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
\begin{equation*}
2 \sin ^{2} x+\sin x+1=\cos ^{2} x . \tag{8}
\end{equation*}
$$

7

The diagram shows triangle $P Q R$ in which $P Q=10 \mathrm{~cm}, Q R=14 \mathrm{~cm}$ and $\angle Q P R=0.7$ radians.
a Find the size of $\angle P R Q$ in radians to 2 decimal places.
The point S lies on $P R$ such that $P S=10 \mathrm{~cm}$. The shaded region is bounded by the straight lines $Q R$ and $R S$ and the arc $Q S$ of a circle, centre P.
b Find the area of the shaded region.

8 a Given that $0<A<90^{\circ}$, and that $\sin A=\frac{\sqrt{5}}{3}$,
i show that $\cos A=\frac{2}{3}$,
ii find the exact value of $\tan A$.
b Find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
\begin{equation*}
5 \sin x \cos x+\cos x=0 \tag{6}
\end{equation*}
$$

9 Find the values of θ in the interval $0 \leq \theta \leq 180$ for which

$$
\begin{equation*}
\cos (2 \theta+30)^{\circ}=-\frac{1}{2} \tag{6}
\end{equation*}
$$

10 a Sketch the curve $y=\cos (x-30)^{\circ}$ for x in the interval $-180 \leq x \leq 180$, showing the coordinates of any maximum or minimum points on the curve.
b Find the x-coordinates of the points where the curve intersects the line $y=0.2$ in this interval, giving your answers to 1 decimal place.

11 Find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
\begin{equation*}
4 \cos ^{2} x-\cos x-2 \sin ^{2} x=0 \tag{8}
\end{equation*}
$$

The diagram shows a circle of radius $r \mathrm{~cm}$. The chord $P Q$ divides the circle into the unshaded minor segment of area A_{1} and the shaded major segment of area A_{2}.
Given that $P Q$ subtends an angle of θ radians at the centre of the circle,
a find an expression for A_{1} in terms of r and θ.
Given also that $\theta=\frac{5 \pi}{6}$,
b show that $A_{1}: A_{2}=(5 \pi-3):(7 \pi+3)$.
13 Find, in terms of π, the values of x in the interval $0 \leq x \leq 2 \pi$ for which

$$
\begin{equation*}
3 \tan x-2 \cos x=0 \tag{7}
\end{equation*}
$$

14 In triangle $A B C, A B=5 \mathrm{~cm}, A C=7 \mathrm{~cm}$ and $B C=8 \mathrm{~cm}$.
a Find the value of $\cos (\angle A B C)$.
b Show that the area of triangle $A B C$ is $10 \sqrt{3} \mathrm{~cm}^{2}$.
15 a Show that

$$
\begin{equation*}
\left(2+\cos ^{2} \theta\right)\left(1+\tan ^{2} \theta\right) \equiv 3+2 \tan ^{2} \theta \tag{3}
\end{equation*}
$$

b Hence find the values of θ in the interval $0 \leq \theta \leq 360^{\circ}$ for which

$$
\begin{equation*}
\left(2+\cos ^{2} \theta\right)\left(1+\tan ^{2} \theta\right)=7 \tag{5}
\end{equation*}
$$

