C2 TRIGONOMETRY

1

The diagram shows triangle $A B C$ in which $A B=16 \mathrm{~cm}, \angle A B C=118^{\circ}$ and $\angle A C B=26^{\circ}$.
Use the sine rule to find the length $A C$ to 3 significant figures.
2

The diagram shows triangle $P Q R$ in which $P Q=8.2 \mathrm{~cm}, P R=11.4 \mathrm{~cm}$ and $\angle P Q R=57^{\circ}$.
Use the sine rule to find the size of $\angle P R Q$ in degrees to 1 decimal place.
In triangle $A B C, A B=16.2 \mathrm{~cm}, B C=12.3 \mathrm{~cm}$ and $\angle B A C=37^{\circ}$.
Find the two possible sizes of $\angle A C B$ and the corresponding lengths of $A C$.
4

The diagram shows triangle $X Y Z$ in which $X Y=15.3 \mathrm{~cm}, Y Z=7.8 \mathrm{~cm}$ and $\angle X Y Z=31.5^{\circ}$.
Use the cosine rule to find the length $X Z$.

The diagram shows triangle $A B C$ in which $A B=18 \mathrm{~cm}, A C=13 \mathrm{~cm}$ and $B C=17 \mathrm{~cm}$.
Use the cosine rule to find the size of $\angle A C B$.
6 Find the length x in each triangle.
a

b

c

7 Find the angle θ in each triangle.
a

b

c

8 Find the area of each of the following triangles.
a

b

c

9 Joanne walks 4.2 miles on a bearing of 138°. She then walks 7.8 miles on a bearing of 251°.
a Calculate how far Joanne is from the point where she started.
b Find, as a bearing, the direction in which Joanne would have to walk in order to return to the point where she started.

10 A ferry and a cargo ship are both approaching the same port. The ferry is 3.2 km from the port on a bearing of 076° and the cargo ship is 6.9 km from the port on a bearing of 323°.
Find the distance between the two vessels and the bearing of the cargo ship from the ferry.
11

The diagram shows triangle $A B C$ in which $A B=10.4 \mathrm{~cm}, A C=11.0 \mathrm{~cm}$ and $B C=9.7 \mathrm{~cm}$. Find the area of the triangle to 3 significant figures.

The diagram shows triangle $X Y Z$ in which $X Y=22.5 \mathrm{~cm}$ and $\angle X Y Z=34^{\circ}$.
Given that the area of the triangle is $100 \mathrm{~cm}^{2}$, find the length $X Z$.

