5 Test

1. The point $P(x, y)$ is on the unit circle in quadrant IV. If $x=\sqrt{11} / 6$, find y.
2. The point P in the figure at the left has y-coordinate $\frac{4}{5}$. Find:
(a) $\sin t$
(b) $\cos t$
(c) $\tan t$
(d) $\sec t$
3. Find the exact value.
(a) $\sin \frac{7 \pi}{6}$
(b) $\cos \frac{13 \pi}{4}$
(c) $\tan \left(-\frac{5 \pi}{3}\right)$
(d) $\csc \frac{3 \pi}{2}$
4. Express $\tan t$ in terms of $\sin t$, if the terminal point determined by t is in quadrant II.
5. If $\cos t=-\frac{8}{17}$ and if the terminal point determined by t is in quadrant III, find $\tan t \cot t+\csc t$.

6-7 - A trigonometric function is given.
(a) Find the amplitude, period, and phase shift of the function.
(b) Sketch the graph.
6. $y=-5 \cos 4 x$
7. $y=2 \sin \left(\frac{1}{2} x-\frac{\pi}{6}\right)$

8-9 - Find the period, and graph the function.
8. $y=-\csc 2 x$
9. $y=\tan \left(2 x-\frac{\pi}{2}\right)$
10. The graph shown at left is one period of a function of the form $y=a \sin k(x-b)$. Determine the function.
r
11. Let $f(x)=\frac{\cos x}{1+x^{2}}$.
(a) Use a graphing device to graph f in an appropriate viewing rectangle.
(b) Determine from the graph if f is even, odd, or neither.
(c) Find the minimum and maximum values of f.
12. A mass suspended from a spring oscillates in simple harmonic motion. The mass completes 2 cycles every second and the distance between the highest point and the lowest point of the oscillation is 10 cm . Find an equation of the form $y=a \sin \omega t$ that gives the distance of the mass from its rest position as a function of time.
13. An object is moving up and down in damped harmonic motion. Its displacement at time $t=0$ is 16 in ; this is its maximum displacement. The damping constant is $c=0.1$ and the frequency is 12 Hz .
(a) Find a function that models this motion.
n
(b) Graph the function.

