SEQUENCES AND SERIES

C2

Worksheet E

1	Expand $(1 + 4x)^4$ in ascending powers of x, simplifying the coefficients.	(4)
2	A geometric series has first term 3 and common ratio -2.	
	a Find the fifth term of the series.	(2)
	b Find the sum of the first ten terms of the series.	(2)
	c Show that the sum of the first eight positive terms of the series is 65 535.	(4)
3	a Expand $(1 + 3x)^7$ in ascending powers of x up to and including the term in x^4 , simplifying each coefficient in the expansion.	(4)
	b Use your series with a suitable value of x to estimate the value of 1.03^7 correct to 5 decimal places.	(3)
4	Evaluate $\sum_{r=3}^{12} 2^r$.	(4)
5	a Expand $(2 + x)^5$, simplifying the coefficient in each term.	(4)
	b Hence, or otherwise, write down the expansion of $(2 - x)^5$.	(1)
	c Show that	
	$(2 + \sqrt{5})^5 - (2 - \sqrt{5})^5 = k\sqrt{5}$,	
	where <i>k</i> is an integer to be found.	(4)
6	Ginny opens a savings account and decides to pay £200 into the account at the start of each month. At the end of each month, interest of 0.5% is paid into the account.	
	a Find, to the nearest penny, the interest paid into the account at the end of the third month.	(4)
	b Show that the total interest paid into the account over the first 12 months is £79.45 to the nearest penny.	(5)
7	Find the first four terms in the expansion of $(1 - 3x)^8$ in ascending powers of x, simplifying each coefficient.	(4)
8	a Prove that the sum, S_n , of the first <i>n</i> terms of a geometric series with first term <i>a</i> and common ratio <i>r</i> is given by	
	$S_n = \frac{a(1-r^n)}{1-r} .$	(4)
	b Find the exact sum of the first 16 terms of the geometric series with fourth term 3 and fifth term 6.	(5)
9	a Write down the first three terms in the binomial expansion of $(1 + ax)^n$, where <i>n</i> is a positive integer, in ascending powers of <i>x</i> .	(2)
	Given that the coefficient of x^2 is three times the coefficient of x ,	
	b show that $n = \frac{6+a}{a}$.	(4)
	Given also that $a = \frac{2}{3}$,	
	c find the coefficient of x^3 in the expansion.	(3)

C2 SEQUENCES AND SERIES

10	Find the first three terms in the expansion of $(2 + 5x)^6$ in ascending powers of x, simplifying each coefficient.	(4)
11	 The first term of a geometric series is 162 and the sum to infinity of the series is 486. a Find the common ratio of the series. b Find the sixth term of the series. c Find, to 3 decimal places, the sum of the first ten terms of the series. 	(3) (2) (4)
12	 a Expand (1 + 3x)⁴ in ascending powers of x, simplifying the coefficients. b Find the coefficient of x² in the expansion of (1 + 4x - x²)(1 + 3x)⁴. 	(4) (3)
13	 In a computer game, each player must complete the tasks set at each level within a fixed amount of time in order to progress to the next level. The time allowed for level 1 is 2 minutes and the time allowed for each of the other levels is 10% less than that allowed in the previous level. a Find, in seconds, the time allowed for completing level 4. b Find, in minutes and seconds, the maximum total time allowed for completing the first 12 levels of the game. 	(2) (4)
14	Given that $(1 + \frac{x}{2})^8 (1 - x)^6 \equiv 1 + Ax + Bx^2 + \dots,$ find the values of the constants A and B.	(7)
15	The terms of a sequence are defined by the recurrence relation $u_r = 2u_{r-1}, r > 1, u_1 = 6.$ a Write down the first four terms of the sequence. b Evaluate $\sum_{r=1}^{10} u_r.$	(1) (3)
16	 a Expand (1 + x)⁴ in ascending powers of x. b Hence, or otherwise, write down the expansion of (1 − x)⁴ in ascending powers of x. c By using your answers to parts a and b, or otherwise, solve the equation (1 + x)⁴ + (1 − x)⁴ = 82, for real values of x. 	(2) (1) (5)
17	 The common ratio of a geometric series is 1.5 and the third term of the series is 18. a Find the first term of the series. b Find the sum of the first six terms of the series. c Find the smallest value of k such that the kth term of the series is greater than 8000. 	(2) (2) (4)
18	The first two terms in the expansion of $(1 + \frac{ax}{2})^{10} + (1 + bx)^{10}$, in ascending powers of <i>x</i> , are 2 and $90x^2$. Given that $a < b$, find the values of the constants <i>a</i> and <i>b</i> .	(9)

© Solomon Press