SEQUENCES AND SERIES

C1

Worksheet D

(6)

1	The second and fifth terms of an arithmetic series are 40 and 121 respectively.	
	a Find the first term and common difference of the series.	(4)
	b Find the sum of the first 25 terms of the series.	(2)
2	A sequence is defined by the recurrence relation	
	$u_r = u_{r-1} + 4, r > 1, u_1 = 3.$	
	a Write down the first five terms of the sequence.	(1)
	b Evaluate $\sum_{r=1}^{20} u_r$.	(3)
	b Evaluate $\sum_{r=1}^{r} u_r$.	(3)
3	The first three terms of an arithmetic series are t, $(2t - 5)$ and 8.6 respectively.	
	a Find the value of the constant <i>t</i> .	(2)
	b Find the 16th term of the series.	(4)
	c Find the sum of the first 20 terms of the series.	(2)
4	a State the formula for the sum of the first <i>n</i> natural numbers.	(1)
	b Find the sum of the natural numbers from 200 to 400 inclusive.	(3)
	c Find the value of N for which the sum of the first N natural numbers is 4950.	(3)
5	A sequence of terms $\{u_n\}$ is defined, for $n \ge 1$, by the recurrence relation $u_{n+1} = k + u_n^2$,	
	where k is a non-zero constant. Given that $u_1 = 1$,	
	a find expressions for u_2 and u_3 in terms of k.	(3)
	Given also that $u_3 = 1$, b. find the value of k	(2)
	 b find the value of k, c state the value of u₂₅ and give a reason for your answer. 	(3)
	c state the value of u_{25} and give a reason for your answer.	(2)
6	a Find the sum of the integers between 1 and 500 that are divisible by 3.	(3)
	b Evaluate $\sum_{r=3}^{20} (5r-1)$.	(3)
7	a Prove that the sum, S_n , of the first <i>n</i> terms of an arithmetic series with first term <i>a</i> and common difference <i>d</i> is given by	
	$S_n = \frac{1}{2}n[2a + (n-1)d].$	(4)
	b An arithmetic series has first term -1 and common difference 6.	
	Verify by calculation that the largest value of <i>n</i> for which the sum of the first <i>n</i> terms of the series is less than 2000 is 26.	(3)
8	A sequence is defined by the recurrence relation	
	$t_{n+1} = 4 - kt_n, n > 0, t_1 = -2,$	
	where k is a positive constant.	
		(0)

Given that $t_3 = 3$, show that $k = -1 + \frac{1}{2}\sqrt{6}$.

Worksheet	Л	continued
VVOIKSIIEEL	$\boldsymbol{\nu}$	continuea

(4)

9	An arithmetic series has first term 6 and common difference 3.	
	a Find the 20th term of the series.	(2)
	Given that the sum of the first <i>n</i> terms of the series is 270,	
	b find the value of <i>n</i> .	(4)
10	A sequence of terms $t_1, t_2, t_3,$ is such that the sum of the first 30 terms is 570.	
	Find the sum of the first 30 terms of the sequences defined by	
	$\mathbf{a} u_n = 3t_n, n \ge 1,$	(2)
	$\mathbf{b} v_n = t_n + 2, n \ge 1,$	(2)
	$\mathbf{c} w_n = t_n + n, n \ge 1.$	(3)
11	Tom's parents decide to pay him an allowance each month beginning on his 12^{th} birthday. The allowance is to be £40 for each of the first three months, £42 for each of the next three months and so on, increasing by £2 per month after each three month period.	
	a Find the total amount that Tom will receive in allowances before his 14 th birthday.	(4)
	b Show that the total amount, in pounds, that Tom will receive in allowances in the <i>n</i> years after his 12^{th} birthday, where <i>n</i> is a positive integer, is given by $12n(4n + 39)$.	5 (4)
12	A sequence is defined by	
	$u_{n+1} = u_n - 3, n \ge 1, u_1 = 80.$	
	Find the sum of the first 45 terms of this sequence.	(3)
13	The third and eighth terms of an arithmetic series are 298 and 263 respectively.	
	a Find the common difference of the series.	(3)
	b Find the number of positive terms in the series.	(4)
	c Find the maximum value of S_n , the sum of the first <i>n</i> terms of the series.	(3)
14	a Find and simplify an expression in terms of <i>n</i> for $\sum_{r=1}^{n} (6r+4)$.	(3)
	b Hence, show that	
	$\sum_{r=n+1}^{2n} (6r+4) = n(9n+7).$	(4)
15	The <i>n</i> th term of a sequence, u_n , is given by	
	$u_n = k^n - n.$	
	Given that $u_2 + u_4 = 6$ and that k is a positive constant,	
	a show that $k = \sqrt{3}$,	(5)
	b show that $u_3 = 3u_1$.	(3)
16	The first three terms of an arithmetic series are $(k + 4)$, $(4k - 2)$ and $(k^2 - 2)$ respectively, where k is a constant.	
	a Show that $k^2 - 7k + 6 = 0$.	(2)
	Given also that the common difference of the series is positive,	

b find the 15th term of the series.

C1

SEQUENCES AND SERIES

© Solomon Press