C1 Sequences and Series

1 The second and fifth terms of an arithmetic series are 40 and 121 respectively.
a Find the first term and common difference of the series.
b Find the sum of the first 25 terms of the series.
2 A sequence is defined by the recurrence relation

$$
\begin{equation*}
u_{r}=u_{r-1}+4, \quad r>1, \quad u_{1}=3 \tag{1}
\end{equation*}
$$

a Write down the first five terms of the sequence.
b Evaluate $\sum_{r=1}^{20} u_{r}$.
3 The first three terms of an arithmetic series are $t,(2 t-5)$ and 8.6 respectively.
a Find the value of the constant t.
b Find the 16th term of the series.
c Find the sum of the first 20 terms of the series.
4 a State the formula for the sum of the first n natural numbers.
b Find the sum of the natural numbers from 200 to 400 inclusive.
c Find the value of N for which the sum of the first N natural numbers is 4950 .
5 A sequence of terms $\left\{u_{n}\right\}$ is defined, for $n \geq 1$, by the recurrence relation

$$
u_{n+1}=k+u_{n}^{2}
$$

where k is a non-zero constant. Given that $u_{1}=1$,
a find expressions for u_{2} and u_{3} in terms of k.
Given also that $u_{3}=1$,
b find the value of k,
c state the value of u_{25} and give a reason for your answer.
6 a Find the sum of the integers between 1 and 500 that are divisible by 3 .
b Evaluate $\sum_{r=3}^{20}(5 r-1)$.
7 a Prove that the sum, S_{n}, of the first n terms of an arithmetic series with first term a and common difference d is given by

$$
\begin{equation*}
S_{n}=\frac{1}{2} n[2 a+(n-1) d] . \tag{4}
\end{equation*}
$$

b An arithmetic series has first term -1 and common difference 6 .
Verify by calculation that the largest value of n for which the sum of the first n terms of the series is less than 2000 is 26 .

8 A sequence is defined by the recurrence relation

$$
t_{n+1}=4-k t_{n}, \quad n>0, \quad t_{1}=-2
$$

where k is a positive constant.
Given that $t_{3}=3$, show that $k=-1+\frac{1}{2} \sqrt{6}$.

9 An arithmetic series has first term 6 and common difference 3 .
a Find the 20th term of the series.
Given that the sum of the first n terms of the series is 270 ,
b find the value of n.
10 A sequence of terms $t_{1}, t_{2}, t_{3}, \ldots$ is such that the sum of the first 30 terms is 570 .
Find the sum of the first 30 terms of the sequences defined by
a $u_{n}=3 t_{n}, n \geq 1$,
b $v_{n}=t_{n}+2, n \geq 1$,
c $w_{n}=t_{n}+n, n \geq 1$.
11 Tom's parents decide to pay him an allowance each month beginning on his $12^{\text {th }}$ birthday. The allowance is to be $£ 40$ for each of the first three months, $£ 42$ for each of the next three months and so on, increasing by $£ 2$ per month after each three month period.
a Find the total amount that Tom will receive in allowances before his $14^{\text {th }}$ birthday.
b Show that the total amount, in pounds, that Tom will receive in allowances in the n years after his $12^{\text {th }}$ birthday, where n is a positive integer, is given by $12 n(4 n+39)$.

12 A sequence is defined by

$$
\begin{equation*}
u_{n+1}=u_{n}-3, \quad n \geq 1, \quad u_{1}=80 . \tag{3}
\end{equation*}
$$

Find the sum of the first 45 terms of this sequence.
13 The third and eighth terms of an arithmetic series are 298 and 263 respectively.
a Find the common difference of the series.
b Find the number of positive terms in the series.
c Find the maximum value of S_{n}, the sum of the first n terms of the series.
14 a Find and simplify an expression in terms of n for $\sum_{r=1}^{n}(6 r+4)$.
b Hence, show that

$$
\begin{equation*}
\sum_{r=n+1}^{2 n}(6 r+4)=n(9 n+7) \tag{4}
\end{equation*}
$$

15 The nth term of a sequence, u_{n}, is given by

$$
u_{n}=k^{n}-n .
$$

Given that $u_{2}+u_{4}=6$ and that k is a positive constant,
a show that $k=\sqrt{3}$,
b show that $u_{3}=3 u_{1}$.
16 The first three terms of an arithmetic series are $(k+4),(4 k-2)$ and $\left(k^{2}-2\right)$ respectively, where k is a constant.
a Show that $k^{2}-7 k+6=0$.
Given also that the common difference of the series is positive,
b find the 15 th term of the series.

