C2 Sequences and Series

1 Expand
a $(1+3 x)^{4}$
b $(2-x)^{5}$
c $\left(3+10 x^{2}\right)^{3}$
d $(a+2 b)^{5}$
e $\left(x^{2}-y\right)^{3}$
f $\left(5+\frac{1}{2} x\right)^{4}$
g $\left(x+\frac{1}{x}\right)^{4}$
h $\left(t-\frac{2}{t^{2}}\right)^{3}$

2 Find the first four terms in the expansion in ascending powers of x of
a $(1+3 x)^{6}$
b $\left(1-\frac{1}{4} x\right)^{8}$
c $(5-x)^{7}$
d $\left(3+2 x^{2}\right)^{10}$

3 Find the coefficient indicated in the following expansions
a $(1+x)^{15}, \quad$ coefficient of x^{3}
b $(1-2 x)^{12}, \quad$ coefficient of x^{4}
c $\quad(3+x)^{7}, \quad$ coefficient of x^{2}
d $(2-y)^{10}, \quad$ coefficient of y^{5}
e $\left(2+t^{3}\right)^{8}, \quad$ coefficient of t^{15}
f $\left(1-\frac{1}{x}\right)^{9}, \quad$ coefficient of x^{-3}

4 a Express $(\sqrt{2}-\sqrt{5})^{4}$ in the form $a+b \sqrt{10}$, where $a, b \in \mathbb{Z}$.
b Express $\left(\sqrt{2}+\frac{1}{\sqrt{3}}\right)^{3}$ in the form $a \sqrt{2}+b \sqrt{3}$, where $a, b \in \mathbb{Q}$.
c Express $(1+\sqrt{5})^{3}-(1-\sqrt{5})^{3}$ in the form $a \sqrt{5}$, where $a \in \mathbb{Z}$.
5 a Expand $\left(1+\frac{x}{2}\right)^{10}$ in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient.
b By substituting a suitable value of x into your answer for part \mathbf{a}, obtain an estimate for
i 1.005^{10}
ii 0.996^{10}
giving your answers to 5 decimal places.
6 a Expand $(3+x)^{8}$ in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient.
b By substituting a suitable value of x into your answer for part a, obtain an estimate for i 3.001^{8} ii 2.995^{8}
giving your answers to 7 significant figures.
7 Expand and simplify
a $(1+10 x)^{4}+(1-10 x)^{4}$
b $\left(2-\frac{1}{3} x\right)^{3}-\left(2+\frac{1}{3} x\right)^{3}$
c $(1+4 y)(1+y)^{3}$
d $(1-x)\left(1+\frac{1}{x}\right)^{3}$

8 Expand each of the following in ascending powers of x up to and including the term in x^{3}.
a $\left(1+x^{2}\right)(1-3 x)^{10}$
b $(1-2 x)(1+x)^{8}$
c $\left(1+x+x^{2}\right)(1-x)^{6}$
d $\left(1+3 x-x^{2}\right)(1+2 x)^{7}$

9 Find the term independent of y in each of the following expansions.
a $\left(y+\frac{1}{y}\right)^{8}$
b $\left(2 y-\frac{1}{2 y}\right)^{12}$
c $\left(\frac{1}{y}+y^{2}\right)^{6}$
d $\left(3 y-\frac{1}{y^{2}}\right)^{9}$

10 The coefficient of x^{2} in the binomial expansion of $\left(1+\frac{2}{5} x\right)^{n}$, where n is a positive integer, is 1.6
a Find the value of n.
b Use your value of n to find the coefficient of x^{4} in the expansion.
11 Given that $y_{1}=(1-2 x)(1+x)^{10}$ and $y_{2}=a x^{2}+b x+c$ and that when x is small, y_{2} can be used as an approximation for y_{1},
a find the values of the constants a, b and c,
b find the percentage error in using y_{2} as an approximation for y_{1} when $x=0.2$
12 In the binomial expansion of $(1+p x)^{q}$, where p and q are constants and q is a positive integer, the coefficient of x is -12 and the coefficient of x^{2} is 60 .

Find
a the value of p and the value of q,
b the value of the coefficient of x^{3} in the expansion.

13 a Expand $\left(3-\frac{x}{3}\right)^{12}$ as a binomial series in ascending powers of x up to and including the term in x^{3}, giving each coefficient as an integer.
b Use your series expansion with a suitable value of x to obtain an estimate for 2.998^{12}, giving your answer to 2 decimal places.

14 a Expand $(1-x)^{5}$ as a binomial series in ascending powers of x.
b Express $(\sqrt{3}+1)(\sqrt{3}-2)$ in the form $A+B \sqrt{3}$, where $A, B \in \mathbb{Z}$.
c Hence express each of the following in the form $C+D \sqrt{3}$, where $C, D \in \mathbb{Z}$.
i $(\sqrt{3}+1)^{5}(\sqrt{3}-2)^{5}$
ii $(\sqrt{3}+1)^{6}(\sqrt{3}-2)^{5}$

15 a Expand $\left(1+\frac{x}{2}\right)^{9}$ in ascending powers of x up to and including the term in x^{4}.
Hence, or otherwise, find
b the coefficient of x^{3} in the expansion of $\left(1+\frac{x}{2}\right)^{9}-\left(1-\frac{x}{2}\right)^{9}$,
c the coefficient of x^{4} in the expansion of $(1+2 x)\left(1+\frac{x}{2}\right)^{9}$.
16 The term independent of x in the expansion of $\left(x^{3}+\frac{a}{x^{2}}\right)^{5}$ is -80 .
Find the value of the constant a.
17 In the binomial expansion of $\left(1+\frac{x}{k}\right)^{n}$, where k is a non-zero constant, n is an integer and $n>1$, the coefficient of x^{2} is three times the coefficient of x^{3}.
a Show that $k=n-2$.
Given also that $n=7$,
b expand $\left(1+\frac{x}{k}\right)^{n}$ in ascending powers of x up to and including the term in x^{4}, giving each coefficient as a fraction in its simplest form.

