Definition: Given a sequence of numbers $\{a_n\}$, the expression

$$a_1 + a_2 + a_3 + \dots + a_n + \dots$$

is called an **infinite series**. The number a_n is the **nth term** of the series. The sequence $\{s_n\}$ defined by

$$s_{1} = a_{1}$$

$$s_{2} = a_{1} + a_{2}$$

$$s_{3} = a_{1} + a_{2} + a_{3}$$

$$\vdots$$

$$s_{n} = a_{1} + a_{2} + a_{3} + \dots + a_{n} = \sum_{k=1}^{n} a_{k}$$

is called the **sequence of partial sums** of the series, the number s_n being the **nth partial sum**. If the sequence of partial sums converges to a limit L, we say that the series converges and that its **sum** is L. In this case, we also write

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n = L$$

If the sequence of partial sums of the series does not converge, we say that the series **diverges**.

Definition: Geometric series are of the form

$$a + ar + ar^{2} + \dots + ar^{n} + \dots = \sum_{n=0}^{\infty} ar^{n}$$

where a and r are fixed real numbers and $a \neq 0$.

Theorem: If r = 1, then $s_n = na$ and if $r \neq 1$, then $s_n = a \frac{1 - r^n}{1 - r}$.

proof. Case 1. If r = 1, then $a_n = a + ar + ar^2 + ... + ar^{n-1} = a + a + ... + a = na$.

Case 2. If $r \neq 1$, then

$$a + ar + ar^{2} + \dots + ar^{n-1} = s_{n} \quad \text{multiply both sides by } r$$

$$ar + ar^{2} + ar^{3} + \dots + ar^{n} = rs_{n} \quad \text{subtract}$$

$$\downarrow$$

$$a - ar^{n} = s_{n} - rs_{n}$$

$$a (1 - r^{n}) = s_{n} (1 - r) \quad \text{divide by } 1 - r$$

$$a \frac{1 - r^{n}}{1 - r} = s_{n}$$

Theorem: If |r| < 1, the geometric series $a + ar + ar^2 + ... + ar^{n-1} + ...$ converges to $\frac{a}{1-r}$ and if $|r| \ge 1$, the series diverges.

proof: If r = 1, then the sequence is constant. In this case, if a = 0, the sequence is the constant zero sequence. Then the series converges to zero. If $a \neq 0$, the series diverges to infinity or negative infinity, depending on the sign of a.

Suppose now that $r \neq 1$. The infinite sum is defined as the limit of the partial sums:

$$s = \lim_{n \to \infty} s_n = \lim_{n \to \infty} a \frac{1 - r^n}{1 - r} = a \frac{1 - \lim_{n \to \infty} r^n}{1 - r}$$

Now if |r| > 1, then r^n diverges and so there is no infinite sum defined. If |r| < 1, then $\lim_{n \to \infty} r^n = 0$ and so

$$s = \lim_{n \to \infty} s_n = \lim_{n \to \infty} a \frac{1 - r^n}{1 - r} = a \frac{1 - \lim_{n \to \infty} r^n}{1 - r} = a \frac{1}{1 - r} = \frac{a}{1 - r}$$

Sample Problems

In each case, compute the sum of the infinite series given.

1.
$$\sum_{n=0}^{\infty} \frac{2}{3^n}$$
 2. $\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^{n+1}$ 3. $\sum_{n=0}^{\infty} \frac{2^{2n+1}}{3^n}$ 4. $\sum_{n=0}^{\infty} (-1)^n \frac{5^n}{3^{2n-1}}$

Practice Problems

In each case, determine whether the given geometric series converges or diverges. If converges, find its sum.

1.
$$\sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^{n}$$
5.
$$\sum_{n=0}^{\infty} \frac{2^{n+1} (-3)^{n+1}}{5^{n-2}}$$
9.
$$\sum_{n=2}^{\infty} \frac{2^{n} 3^{n+1}}{7^{n-1}}$$
2.
$$\sum_{n=0}^{\infty} (-1)^{n} \frac{2^{n+1}}{3^{n-1}}$$
6.
$$\sum_{n=0}^{\infty} \frac{9^{n}}{10^{n+1}}$$
10.
$$\sum_{n=0}^{\infty} \frac{1}{e^{n}}$$
3.
$$\sum_{n=0}^{\infty} (-1)^{n} \frac{2^{2n}}{3^{n+1}}$$
7.
$$\sum_{n=1}^{\infty} \frac{3}{10^{n}}$$
4.
$$\sum_{n=0}^{\infty} \frac{2^{2n+1}}{5^{n-2}}$$
8.
$$\sum_{n=1}^{\infty} \frac{3}{(-10)^{n}}$$

11*.
$$\sum_{n=1}^{\infty} \frac{2n-1}{3^{n+1}} = \frac{1}{9} + \frac{3}{27} + \frac{5}{81} + \frac{7}{243} + \dots$$

Answers - Sample Problems

1.) 3 2.) 2 3.) diverges 4.) $\frac{27}{14}$

Answers - Practice Problems

1.) $\frac{1}{9}$ 2.) $\frac{18}{5}$ 3.) diverges 4.) 250 5.) diverges 6.) 1 7.) $\frac{1}{3}$ 8.) $-\frac{3}{11}$ 9.) 108 10.) $\frac{e}{e-1}$ 11.) $\frac{1}{3}$

Sample Problems - Solutions

In each case, compute the sum of the infinite series given.

1. $\sum_{n=0}^{\infty} \frac{2}{3^n}$

This sequence is $2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \dots$ Thus a = 2 and $r = \frac{1}{3}$. The sum of the series exists and can be computed as

$$s = \frac{a}{1-r} = \frac{2}{1-\frac{1}{3}} = \frac{2}{\frac{2}{3}} = 3$$

 $2. \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^{n+1}$

This sequence is $\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \dots$ Thus $a = \frac{2}{3}$ and $r = \frac{2}{3}$. The sum of the series exists and can be computed as

$$s = \frac{a}{1-r} = \frac{\frac{2}{3}}{1-\frac{2}{3}} = \frac{\frac{2}{3}}{\frac{1}{3}} = 2$$

3. $\sum_{n=0}^{\infty} \frac{2^{2n+1}}{3^n}$

Sometimes a bit of algebra helps more than writing out the first few terms immediately. We can re-write 2^{2n+1} as

$$2^{2n+1} = 2^{2n} \cdot 2 = \left(2^2\right)^n \cdot 2 = 4^n \cdot 2$$

and so

$$\sum_{n=0}^{\infty} \frac{2^{2n+1}}{3^n} = \sum_{n=0}^{\infty} \frac{4^n \cdot 2}{3^n} = \sum_{n=0}^{\infty} 2\left(\frac{4}{3}\right)^n$$

This sequence is $2, \frac{8}{3}, \frac{32}{27}, \dots$ Thus a = 2 and $r = \frac{4}{3}$. Since $\frac{4}{3} > 1$, this series diverges.

© copyright Hidegkuti, Powell, 2013

Last revised: December 23, 2013

$$4. \sum_{n=0}^{\infty} (-1)^n \frac{5^n}{3^{2n-1}}$$
$$\sum_{n=0}^{\infty} (-1)^n \frac{5^n}{3^{2n-1}} = \sum_{n=0}^{\infty} (-1)^n \frac{5^n}{\frac{3^{2n}}{3}} = \sum_{n=0}^{\infty} (-1)^n \frac{3 \cdot 5^n}{(3^2)^n} = \sum_{n=0}^{\infty} (-1)^n \frac{3 \cdot 5^n}{9^n} = \sum_{n=0}^{\infty} 3 \cdot \left(-\frac{5}{9}\right)^n$$

Thus a = 3 and $r = -\frac{5}{9}$. Then the sum of the series exists and can be computed as

$$s = \frac{a}{1-r} = \frac{3}{1-\left(-\frac{5}{9}\right)} = \frac{3}{-\frac{14}{9}} = \frac{27}{14}$$

For more documents like this, visit our page at http://www.teaching.martahidegkuti.com and click on Lecture Notes. E-mail questions or comments to mhidegkuti@ccc.edu.