Definition: Given a sequence of numbers $\left\{a_{n}\right\}$, the expression

$$
a_{1}+a_{2}+a_{3}+\ldots+a_{n}+\ldots
$$

is called an infinite series. The number a_{n} is the \boldsymbol{n} th term of the series. The sequence $\left\{s_{n}\right\}$ defined by

$$
\begin{aligned}
s_{1}= & a_{1} \\
s_{2}= & a_{1}+a_{2} \\
s_{3}= & a_{1}+a_{2}+a_{3} \\
& \vdots \\
s_{n}= & a_{1}+a_{2}+a_{3}+\ldots+a_{n}=\sum_{k=1}^{n} a_{k}
\end{aligned}
$$

is called the sequence of partial sums of the series, the number s_{n} being the \boldsymbol{n} th partial sum. If the sequence of partial sums converges to a limit L, we say that the series converges and that its sum is L. In this case, we also write

$$
a_{1}+a_{2}+a_{3}+\ldots+a_{n}+\ldots=\sum_{n=1}^{\infty} a_{n}=L
$$

If the sequence of partial sums of the series does not converge, we say that the series diverges.

Definition: Geometric series are of the form

$$
a+a r+a r^{2}+\ldots+a r^{n}+\ldots=\sum_{n=0}^{\infty} a r^{n}
$$

where a and r are fixed real numbers and $a \neq 0$.

Theorem: If $r=1$, then $s_{n}=n a$ and if $r \neq 1$, then $s_{n}=a \frac{1-r^{n}}{1-r}$.
proof. Case 1. If $r=1$, then $a_{n}=a+a r+a r^{2}+\ldots+a r^{n-1}=a+a+\ldots+a=n a$.
Case 2. If $r \neq 1$, then

$$
\begin{array}{rlr}
a+a r+a r^{2}+\ldots+a r^{n-1} & =s_{n} \quad \text { multiply both sides by } r \\
a r+a r^{2}+a r^{3}+\ldots+a r^{n} & =r s_{n} \quad \text { subtract } & \\
& \Downarrow & \\
a-a r^{n} & =s_{n}-r s_{n} & \\
a\left(1-r^{n}\right) & =s_{n}(1-r) \quad \text { divide by } 1-r \\
a \frac{1-r^{n}}{1-r} & =s_{n} &
\end{array}
$$

Theorem: If $|r|<1$, the geometric series $a+a r+a r^{2}+\ldots+a r^{n-1}+\ldots$ converges to $\frac{a}{1-r}$ and if $|r| \geq 1$, the series diverges.
proof: If $r=1$, then the sequence is constant. In this case, if $a=0$, the sequence is the constant zero sequence. Then the series converges to zero. If $a \neq 0$, the series diverges to infinity or negative infinity, depending on the sign of a.
Suppose now that $r \neq 1$. The infinte sum is defined as the limit of the partial sums:

$$
s=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} a \frac{1-r^{n}}{1-r}=a \frac{1-\lim _{n \rightarrow \infty} r^{n}}{1-r}
$$

Now if $|r|>1$, then r^{n} diverges and so there is no infinite sum defined. If $|r|<1$, then $\lim _{n \rightarrow \infty} r^{n}=0$ and so

$$
s=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} a \frac{1-r^{n}}{1-r}=a \frac{1-\lim _{n \rightarrow \infty} r^{n}}{1-r}=a \frac{1}{1-r}=\frac{a}{1-r}
$$

Sample Problems

In each case, compute the sum of the infinite series given.

1. $\sum_{n=0}^{\infty} \frac{2}{3^{n}}$
2. $\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n+1}$
3. $\sum_{n=0}^{\infty} \frac{2^{2 n+1}}{3^{n}}$
4. $\sum_{n=0}^{\infty}(-1)^{n} \frac{5^{n}}{3^{2 n-1}}$

Practice Problems

In each case, determine whether the given geometric series converges or diverges. If converges, find its sum.

1. $\sum_{n=1}^{\infty}\left(\frac{1}{10}\right)^{n}$
2. $\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{n+1}}{3^{n-1}}$
3. $\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n}}{3^{n+1}}$
4. $\sum_{n=0}^{\infty} \frac{2^{2 n+1}}{5^{n-2}}$
5. $\sum_{n=0}^{\infty} \frac{2^{n+1}(-3)^{n+1}}{5^{n-2}}$
6. $\sum_{n=0}^{\infty} \frac{9^{n}}{10^{n+1}}$
7. $\sum_{n=1}^{\infty} \frac{3}{10^{n}}$
8. $\sum_{n=1}^{\infty} \frac{3}{(-10)^{n}}$
9. $\sum_{n=2}^{\infty} \frac{2^{n} 3^{n+1}}{7^{n-1}}$
10. $\sum_{n=0}^{\infty} \frac{1}{e^{n}}$

11*. $\sum_{n=1}^{\infty} \frac{2 n-1}{3^{n+1}}=\frac{1}{9}+\frac{3}{27}+\frac{5}{81}+\frac{7}{243}+\ldots$.

Answers - Sample Problems

1.) 3
2.) 2
3.) diverges
4.) $\frac{27}{14}$

Answers - Practice Problems

1.) $\frac{1}{9}$
2.) $\frac{18}{5}$
3.) diverges
4.) 250
5.) diverges
6.) 1
7.) $\frac{1}{3}$
8.) $-\frac{3}{11}$
9.) 108
10.) $\frac{e}{e-1}$
11.) $\frac{1}{3}$

Sample Problems - Solutions

In each case, compute the sum of the infinite series given.

1. $\sum_{n=0}^{\infty} \frac{2}{3^{n}}$

This sequence is $2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \ldots \ldots$ Thus $a=2$ and $r=\frac{1}{3}$. The sum of the series exists and can be computed as

$$
s=\frac{a}{1-r}=\frac{2}{1-\frac{1}{3}}=\frac{2}{\frac{2}{3}}=3
$$

2. $\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n+1}$

This sequence is $\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \ldots \ldots$. Thus $a=\frac{2}{3}$ and $r=\frac{2}{3}$. The sum of the series exists and can be computed as

$$
s=\frac{a}{1-r}=\frac{\frac{2}{3}}{1-\frac{2}{3}}=\frac{\frac{2}{3}}{\frac{1}{3}}=2
$$

3. $\sum_{n=0}^{\infty} \frac{2^{2 n+1}}{3^{n}}$

Sometimes a bit of algebra helps more than writing out the first few terms immediately. We can re-write $2^{2 n+1}$ as

$$
2^{2 n+1}=2^{2 n} \cdot 2=\left(2^{2}\right)^{n} \cdot 2=4^{n} \cdot 2
$$

and so

$$
\sum_{n=0}^{\infty} \frac{2^{2 n+1}}{3^{n}}=\sum_{n=0}^{\infty} \frac{4^{n} \cdot 2}{3^{n}}=\sum_{n=0}^{\infty} 2\left(\frac{4}{3}\right)^{n}
$$

This sequence is $2, \frac{8}{3}, \frac{32}{27}, \ldots \ldots$ Thus $a=2$ and $r=\frac{4}{3}$. Since $\frac{4}{3}>1$, this series diverges.
4. $\sum_{n=0}^{\infty}(-1)^{n} \frac{5^{n}}{3^{2 n-1}}$

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{5^{n}}{3^{2 n-1}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{5^{n}}{\frac{3^{2 n}}{3}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{3 \cdot 5^{n}}{\left(3^{2}\right)^{n}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{3 \cdot 5^{n}}{9^{n}}=\sum_{n=0}^{\infty} 3 \cdot\left(-\frac{5}{9}\right)^{n}
$$

Thus $a=3$ and $r=-\frac{5}{9}$. Then the sum of the series exists and can be computed as

$$
s=\frac{a}{1-r}=\frac{3}{1-\left(-\frac{5}{9}\right)}=\frac{3}{\frac{14}{9}}=\frac{27}{14}
$$

For more documents like this, visit our page at http://www.teaching.martahidegkuti.com and click on Lecture Notes. E-mail questions or comments to mhidegkuti@ccc.edu.

